950 resultados para material flow
Resumo:
The role of technology management in achieving improved manufacturing performance has been receiving increased attention as enterprises are becoming more exposed to competition from around the world. In the modern market for manufactured goods the demand is now for more product variety, better quality, shorter delivery and greater flexibility, while the financial and environmental cost of resources has become an urgent concern to manufacturing managers. This issue of the International Journal of Technology Management addresses the question of how the diffusion, implementation and management of technology can improve the performance of manufacturing industries. The authors come from a large number of different countries and their contributions cover a wide range of topics within this general theme. Some papers are conceptual, others report on research carried out in a range of different industries including steel production, iron founding, electronics, robotics, machinery, precision engineering, metal working and motor manufacture. In some cases they describe situations in specific countries. Several are based on presentations made at the UK Operations Management Association's Sixth International Conference held at Aston University at which the conference theme was 'Achieving Competitive Edge: Getting Ahead Through Technology and People'. The first two papers deal with questions of advanced manufacturing technology implementation and management. Firstly Beatty describes a three year longitudinal field study carried out in ten Canadian manufacturing companies using CADICAM and CIM systems. Her findings relate to speed of implementation, choice of system type, the role of individuals in implementation, organization and job design. This is followed by a paper by Bessant in which he argues that a more a strategic approach should be taken towards the management of technology in the 1990s and beyond. Also considered in this paper are the capabilities necessary in order to deploy advanced manufacturing technology as a strategic resource and the way such capabilities might be developed within the firm. These two papers, which deal largely with the implementation of hardware, are supplemented by Samson and Sohal's contribution in which they argue that a much wider perspective should be adopted based on a new approach to manufacturing strategy formulation. Technology transfer is the topic of the following two papers. Pohlen again takes the case of advanced manufacturing technology and reports on his research which considers the factors contributing to successful realisation of AMT transfer. The paper by Lee then provides a more detailed account of technology transfer in the foundry industry. Using a case study based on a firm which has implemented a number of transferred innovations a model is illustrated in which the 'performance gap' can be identified and closed. The diffusion of technology is addressed in the next two papers. In the first of these, by Lowe and Sim, the managerial technologies of 'Just in Time' and 'Manufacturing Resource Planning' (or MRP 11) are examined. A study is described from which a number of factors are found to influence the adoption process including, rate of diffusion and size. Dahlin then considers the case of a specific item of hardware technology, the industrial robot. Her paper reviews the history of robot diffusion since the early 1960s and then tries to predict how the industry will develop in the future. The following two papers deal with the future of manufacturing in a more general sense. The future implementation of advanced manufacturing technology is the subject explored by de Haan and Peters who describe the results of their Dutch Delphi forecasting study conducted among a panel of experts including scientists, consultants, users and suppliers of AMT. Busby and Fan then consider a type of organisational model, 'the extended manufacturing enterprise', which would represent a distinct alternative pure market-led and command structures by exploiting the shared knowledge of suppliers and customers. The three country-based papers consider some strategic issues relating manufacturing technology. In a paper based on investigations conducted in China He, Liff and Steward report their findings from strategy analyses carried out in the steel and watch industries with a view to assessing technology needs and organizational change requirements. This is followed by Tang and Nam's paper which examines the case of machinery industry in Korea and its emerging importance as a key sector in the Korean economy. In his paper which focuses on Venezuela, Ernst then considers the particular problem of how this country can address the problem of falling oil revenues. He sees manufacturing as being an important contributor to Venezuela's future economy and proposes a means whereby government and private enterprise can co-operate in development of the manufacturing sector. The last six papers all deal with specific topics relating to the management manufacturing. Firstly Youssef looks at the question of manufacturing flexibility, introducing and testing a conceptual model that relates computer based technologies flexibility. Dangerfield's paper which follows is based on research conducted in the steel industry. He considers the question of scale and proposes a modelling approach determining the plant configuration necessary to meet market demand. Engstrom presents the results of a detailed investigation into the need for reorganising material flow where group assembly of products has been adopted. Sherwood, Guerrier and Dale then report the findings of a study into the effectiveness of Quality Circle implementation. Stillwagon and Burns, consider how manufacturing competitiveness can be improved individual firms by describing how the application of 'human performance engineering' can be used to motivate individual performance as well as to integrate organizational goals. Finally Sohal, Lewis and Samson describe, using a case study example, how just-in-time control can be applied within the context of computer numerically controlled flexible machining lines. The papers in this issue of the International Journal of Technology Management cover a wide range of topics relating to the general question of improving manufacturing performance through the dissemination, implementation and management of technology. Although they differ markedly in content and approach, they have the collective aim addressing the concepts, principles and practices which provide a better understanding the technology of manufacturing and assist in achieving and maintaining a competitive edge.
Resumo:
An assessment of the sustainability of the Irish economy has been carried out using three methodologies, enabling comparison and evaluation of the advantages and disadvantages of each, and potential synergies among them. The three measures chosen were economy-wide Material Flow Analysis (MFA), environmentally extended input-output (EE-IO) analysis and the Ecological Footprint (EF). The research aims to assess the sustainability of the Irish economy using these methods and to draw conclusions on their effectiveness in policy making both individually and in combination. A theoretical description discusses the methods and their respective advantages and disadvantages and sets out a rationale for their combined application. The application of the methods in combination has provided insights into measuring the sustainability of a national economy and generated new knowledge on the collective application of these methods. The limitations of the research are acknowledged and opportunities to address these and build on and extend the research are identified. Building on previous research, it is concluded that a complete picture of sustainability cannot be provided by a single method and/or indicator.
Resumo:
Costs related to inventory are usually a significant amount of the company’s total assets. Despite this, companies in general don’t pay a lot of interest in it, even if the benefits from effective inventory are obvious when it comes to less tied up capital, increased customer satisfaction and better working environment. Permobil AB, Timrå is in an intense period when it comes to revenue and growth. The production unit is aiming for an increased output of 30 % in the next two years. To make this possible the company has to improve their way to distribute and handle material,The purpose of the study is to provide useful information and concrete proposals for action, so that the company can build a strategy for an effective and sustainable solution when it comes to inventory management. Alternative methods for making forecasts are suggested, in order to reach a more nuanced perception of different articles, and how they should be managed. Analytic Hierarchy Process (AHP) was used in order to give specially selected persons the chance to decide criteria for how the article should be valued. The criteria they agreed about were annual volume value, lead time, frequency rate and purchase price. The other method that was proposed was a two-dimensional model where annual volume value and frequency was the criteria that specified in which class an article should be placed. Both methods resulted in significant changes in comparison to the current solution. For the spare part inventory different forecast methods were tested and compared with the current solution. It turned out that the current forecast method performed worse than both moving average and exponential smoothing with trend. The small sample of ten random articles is not big enough to reject the current solution, but still the result is a reason enough, for the company to control the quality of the forecasts.
Resumo:
Die Automatisierung logistischer Prozesse stellt aufgrund dynamischer Prozesseigenschaften und wirtschaftlicher Anforderungen eine große technische Herausforderung dar. Es besteht der Bedarf nach neuartigen hochflexiblen Automatisierungs- und Roboterlösungen, die in der Lage sind, variable Güter zu handhaben oder verschiedene Prozesse bzw. Funktionalitäten auszuführen. Im Rahmen dieses Beitrages wird die Steigerung der Flexibilität anhand von zwei konkreten Beispielen aus den Bereichen Stückguthandhabung und Materialflusstechnik adressiert.
Resumo:
The lack of flexibility in logistic systems currently on the market leads to the development of new innovative transportation systems. In order to find the optimal configuration of such a system depending on the current goal functions, for example minimization of transport times and maximization of the throughput, various mathematical methods of multi-criteria optimization are applicable. In this work, the concept of a complex transportation system is presented. Furthermore, the question of finding the optimal configuration of such a system through mathematical methods of optimization is considered.
Resumo:
As metas da União Europeia para 2020 em termos de biocombustíveis e biolíquidos traduziram-se, na última década, num destaque da indústria de biodiesel em Portugal. Inerente ao processo de produção biodiesel está um subproduto, o glicerol bruto, cujo estudo tem vindo a ser alvo de interesse na comunidade científica. O objetivo principal deste trabalho consistiu no estudo da gasificação do glicerol técnico e do glicerol bruto, usando vapor como agente oxidante. Pretendeu-se avaliar a composição do gás de produção obtido e os parâmetros de gasificação, como a percentagem de conversão de carbono e de hidrogénio, o rendimento de gás seco, a eficiência de gás frio e o poder calorífico do gás produzido. No estudo da gasificação do glicerol técnico avaliou-se o efeito da temperatura na performance do processo, entre 750 – 1000 ºC, e estudou-se ainda o efeito do caudal de alimentação ao reator (3,8 mL/min, 6,5 mL/min e 10,0 mL/min). Para o caudal mais baixo, estudou-se o efeito da razão de mistura glicerol/água (25/75, 40/60, 60/40 e 75/25) e para a razão de mistura 60/40 foi avaliada a influência da adição de ar como agente gasificante. O estudo da gasificação do glicerol bruto foi feito realizando ensaios de gasificação numa gama de temperaturas de 750 ºC a 1000 ºC, para uma razão de mistura glicerol/água (60/40) com o caudal de 3,8 mL/min e usando apenas vapor de água como agente de gasificação. Os ensaios foram realizados num reator de leito fixo de 500 mm de comprimento e 90 mm de diâmetro interno, composto por um leito de alumina com partículas de 5 mm de diâmetro. O aquecimento foi realizado com um forno elétrico de 4 kW. A amostra de gás de produção recolhida foi analisada por cromatografia gasosa com detector de termocondutividade. Os resultados obtidos na gasificação do glicerol técnico, revelaram que a temperatura é uma variável preponderante no desempenho do processo de gasificação. À exceção do poder calorífico superior, para o qual se obteve uma ligeira diminuição de valores com o aumento da temperatura, os valores mais elevados dos parâmetros de gasificação foram obtidos para temperaturas superiores a 900 ºC. Esta temperatura parece ser determinante no modelo cinético de gasificação do glicerol, condicionando a composição do gás de produção obtido. Concluiu-se ainda que, na gama de caudais testada, o caudal de alimentação ao reator não teve influência no processo de gasificação. Os ensaios realizados para avaliar o efeito da razão de mistura permitiram verificar que, o aumento da adição de água à alimentação se traduz na redução do teor de CO e de CH4 e no aumento do teor de H2 e CO2, no gás de produção. Para a razão de mistura 25/75 foram obtidos valores de 1,3 para o rácio H2/CO para temperaturas superiores a 900 ºC. A influência da adição de água tornou-se mais evidente nos ensaios de gasificação realizados a temperaturas superiores a 900 ºC. Verificou-se um aumento da conversão de carbono, do rendimento de gás seco e da eficiência do gás frio e uma ligeira diminuição do poder calorífico e da potência disponível, no gás de produção. Para as razões de misturas 60/40 e 40/60 obtiveram-se resultados, para os parâmetros de gasificação, da mesma ordem de grandeza e com valores intermédios entre os obtidos para as razões de mistura 25/75 e 75/25. Porém, quanto maior o teor de água alimentado maior o consumo de energia associado à vaporização da água. Assim, o aumento do teor de água na mistura só apresentará interesse industrial se o objetivo passar pela produção de hidrogénio. Quanto ao efeito da adição de ar como agente de gasificação, os resultados obtidos dão indicação que se poderão potenciar algumas reações exotérmicas que contribuirão para a redução do consumo energético global do processo. Por outro lado, o gás de produção apresentou um rácio H2/CO interessante do ponto de vista da sua aplicação industrial, superior em 35 % ao verificado para a gasificação efetuada apenas na presença de vapor. À exceção do decréscimo no valor do poder calorífico superior do gás de produção, os restantes parâmetros estudados apresentaram a mesma ordem de grandeza, dos obtidos para o estudo da mesma razão de mistura na ausência de ar. Relativamente ao estudo da gasificação do glicerol bruto, obtiveram-se valores de rácio H2/CO e eficiência de gás frio mais elevados que os valores obtidos para a mesma razão de mistura usando glicerol técnico. Os demais parâmetros de gasificação avaliados mostraram-se semelhantes entre as duas matérias-primas, verificando-se apenas uma ligeira diminuição no valor do poder calorífico superior do gás produzido com glicerol bruto. Os resultados obtidos demonstram a possibilidade de valorização energética do glicerol bruto resultante da produção de biodiesel.
Resumo:
In a globalized economy, the use of natural resources is determined by the demand of modern production and consumption systems, and by infrastructure development. Sustainable natural resource use will require good governance and management based on sound scientific information, data and indicators. There is a rich literature on natural resource management, yet the national and global scale and macro-economic policy making has been underrepresented. We provide an overview of the scholarly literature on multi-scale governance of natural resources, focusing on the information required by relevant actors from local to global scale. Global natural resource use is largely determined by national, regional, and local policies. We observe that in recent decades, the development of public policies of natural resource use has been fostered by an “inspiration cycle” between the research, policy and statistics community, fostering social learning. Effective natural resource policies require adequate monitoring tools, in particular indicators for the use of materials, energy, land, and water as well as waste and GHG emissions of national economies. We summarize the state-of-the-art of the application of accounting methods and data sources for national material flow accounts and indicators, including territorial and product-life-cycle based approaches. We show how accounts on natural resource use can inform the Sustainable Development Goals (SDGs) and argue that information on natural resource use, and in particular footprint indicators, will be indispensable for a consistent implementation of the SDGs. We recognize that improving the knowledge base for global natural resource use will require further institutional development including at national and international levels, for which we outline options.
Resumo:
The preparation of macroporous methacrylate monolithic material with controlled pore structures can be carried out in an unstirred mould through careful and precise control of the polymerisation kinetics and parameters. Contemporary synthesis conditions of methacrylate monolithic polymers are based on existing polymerisation schemes without an in-depth understanding of the dynamics of pore structure and formation. This leads to poor performance in polymer usage thereby affecting final product recovery and purity, retention time, productivity and process economics. The unique porosity of methacrylate monolithic polymer which propels its usage in many industrial applications can be controlled easily during its preparation. Control of the kinetics of the overall process through changes in reaction time, temperature and overall composition such as cross-linker and initiator contents allow the fine tuning of the macroporous structure and provide an understanding of the mechanism of pore formation within the unstirred mould. The significant effect of temperature of the reaction kinetics serves as an effectual means to control and optimise the pore structure and allows the preparation of polymers with different pore size distributions from the same composition of the polymerisation mixture. Increasing the concentration of the cross-linking monomer affects the composition of the final monoliths and also decreases the average pore size as a result of pre-mature formation of highly cross-linked globules with a reduced propensity to coalesce. The choice and concentration of porogen solvent is also imperative. Different porogens and porogen mixtures present different pore structure output. Example, larger pores are obtained in a poor solvent due to early phase separation.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.
Resumo:
The transient natural convection flow with thermal stratification in a rectangular cavity filled with fluid saturated porous medium obeying Darcy's law has been studied. Prior to the time t* = 0, the flow in the cavity is assumed to be motionless and all four walls of the cavity are at the same constant temperature. At time t* = 0, the temperatures of the vertical walls are suddenly increased which vary linearly with the distance y and at the same time on the bottom wall an isothermal heat source is placed centrally. This sudden change in the wall temperatures gives rise to unsteadiness in the problem. The horizontal temperature difference induces and sustains a buoyancy driven flow in the cavity which is then controlled by the vertical temperature difference. The partial differential equations governing the transient natural convection flow have been solved numerically. The local and average Nusselt numbers decrease rapidly in a small time interval after the start of the impulsive change in the wall temperatures and the steady state is reached quickly. The time required to reach the steady state depends on the Rayleigh number and the thermal stratification parameter.
Resumo:
The kinematic flow pattern in slow deformation of a model dense granular medium is studied at high resolution using in situ imaging, coupled with particle tracking. The deformation configuration is indentation by a flat punch under macroscopic plane-strain conditions. Using a general analysis method, velocity gradients and deformation fields are obtained from the disordered grain arrangement, enabling flow characteristics to be quantified. The key observations are the formation of a stagnation zone, as in dilute granular flow past obstacles; occurrence of vortices in the flow immediately underneath the punch; and formation of distinct shear bands adjoining the stagnation zone. The transient and steady state stagnation zone geometry, as well as the strength of the vortices and strain rates in the shear bands, are obtained from the experimental data. All of these results are well-reproduced in exact-scale non-smooth contact dynamics simulations. Full 3D numerical particle positions from the simulations allow extraction of flow features that are extremely difficult to obtain from experiments. Three examples of these, namely material free surface evolution, deformation of a grain column below the punch and resolution of velocities inside the primary shear band, are highlighted. The variety of flow features observed in this model problem also illustrates the difficulty involved in formulating a complete micromechanical analytical description of the deformation.
Resumo:
Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.