998 resultados para maintain mechanism
Resumo:
Kaolinite naturally occurs in the plate form for the interlayer hydrogen bond and the distortion and adaption of tetrahedron and octahedron. But kaolinite sheets can be exfoliated to nanoscrolls artificially in laboratory through multiple-step displacement intercalation. The driving force for kaolinite sheet to be curled nanoscroll originates from the size discrepancy of Si–O tetrahedron and Al–O octahedron. The displacement intercalation promoted the platy kaolinite sheets spontaneously to be scrolled by eliminating the interlayer hydrogen bond and atomic interaction. Kaolinite nanoscrolls are hollow tubes with outer face of tetrahedral sheet and inner face of octahedral sheet. Based on the theoretical calculation it is firstly reported that the minimum interior diameter for a single kaolinite sheet to be scrolled is about 9.08 nm, and the optimal 24.30 nm, the maximum 100 nm, which is verified by the observation of scanning electron microscope and transmission electron microscope. The different adaption types and discrepancy degree between tetrahedron and octahedron generate various curling forces in different directions. The nanoscroll axes prefer the directions as [100], [1 �10], [110], [3 �10], and the relative curling force are as follows, [3 �10] > [100] = [1�10] > [110].
Resumo:
The bacterial flagellar switch that controls the direction of flagellar rotation during Chemotaxis has a highly cooperative response. This has previously been understood in terms of the classic two-state, concerted model of allosteric regulation. Here, we used high-resolution optical microscopy to observe switching of single motors and uncover the stochastic multistate nature of the switch. Our observations are in detailed quantitative agreement with a recent general model of allosteric cooperativity that exhibits conformational spread-the stochastic growth and shrinkage of domains of adjacent subunits sharing a particular conformational state. We expect that conformational spread will be important in explaining cooperativity in other large signaling complexes.
Resumo:
Plasmid DNA for therapeutic and vaccination purposes must be highly purified. The high selectivity of affinity chromatography makes it ideal for the isolation of pDNA from complex biological feed stocks. Affinity chromatography makes use of the biological function and/or individual chemical structure of the interacting molecules. However, the success of any affinity purification protocol is dependent on the availability of suitable ligands. In this study, surface plasmon resonance (SPR) based Biacore system has been employed for the detection and quantification of the binding between lac operon (lacO) sequence contained in a pDNA and synthetic peptides based on the DNA-binding domain of the lac repressor protein, lad. The equilibrium dissociation constant (K D) and association and dissociation rate constants (ka, kd) for the interaction between plasmid DNA and designed peptides were determined.
Resumo:
The dorsal lateral amygdala (LAd) is a vital nucleus for the formation of associations between aversive unconditioned stimuli (US) and neutral stimuli, such as auditory tones, which can become conditioned (CS) to the US through temporal pairing. Important aspects of CS-US associations are believed to occur within the LAd, however relatively little is known about the temporal behavior of local LAd networks. Information about the CS and US enters the LA via a rapid and direct thalamic input and a longer latency cortical path...
Cooperative choice and its framing effect under threshold uncertainty in a provision point mechanism
Resumo:
This paper explores how threshold uncertainty affects cooperative behaviors in the provision of public goods and the prevention of public bads. The following facts motivate our study. First, environmental (resource) problems are either framed as public bads prevention or public goods provision. Second, the occurrence of these problems is characterized by thresholds that are interchangeably represented as "nonconvexity," "bifurcation," "bi-stability," or "catastrophes." Third, the threshold location is mostly unknown. We employ a provision point mechanism with threshold uncertainty and analyze the responses of cooperative behaviors to uncertainty and to the framing for each type of social preferences categorized by a value orientation test. We find that aggregate framing effects are negligible, although the response to the frame is the opposite depending on the type of social preferences. "Cooperative" subjects become more cooperative in negative frames than in positive frames, whereas "individualistic" subjects are less cooperative in negative frames than in positive ones. This finding implies that the insignificance of aggregate framing effects arises from behavioral asymmetry. We also find that the percentage of cooperative choices non-monotonically varies with the degree of threshold uncertainty, irrespective of framing and value orientation. Specifically, the degree of cooperation is highest at intermediate levels of threshold uncertainty and decreases as the uncertainty becomes sufficiently large.
Resumo:
The intercalation of an anionic surfactant, sodium dodecylsulfate (SDS), into hydrocalumite (CaAl-LDH-Cl) was investigated in this study. To understand the intercalation behavior, X-ray diffraction (XRD), mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR) and scanning electron microscopy (SEM) were undertaken. The near-infrared spectra indicated a special spectral range from 6000 to 5600cm-1and prominent bands of CaAl-LDH-Cl intercalated with SDS around 8388cm-1. This band was assigned to the second overtone of the first fundamental of CH stretching vibrations of SDS, and it could be used to determinate the result of CaAl-LDH-Cl modified by SDS. Moreover, the results revealed that different adsorption behaviors were observed at different (high and low) concentrations of SDS. When the SDS concentration was around 0.2molL-1, anion exchange intercalation occurred and the interlayer distance expanded to about 3.25nm. When SDS concentration was 0.005molL-1, the surface adsorption of DS- was the major anion exchange event.
Resumo:
This article contributes to the theorization of the role of informal regulation (undertaken by leading firms) in the ongoing organization of global production networks. It does so through a qualitative case study of BHP Billiton's Ravensthorpe Nickel Operation (RNO) in the rural Shire of Ravensthorpe in Western Australia. This less tangible, and to date under-researched, dimension of global production networks is foregrounded through a focus on the corporate social responsibility strategy implemented by RNO in the service of achieving and/or demonstrating a broader ‘social licence to operate’. This ‘licence’ functions – beyond the corporation – as a legitimated and legitimating multi-scalar mechanism through which to gain and maintain access to mineral resources and thus to establish viable and ongoing global production networks. Further, this informal regulation is shown to shape social relations and qualities of place conducive to competitive global mineral extraction and to facilitate the positioning of local communities and places in mineral global production networks.
Resumo:
Invasive non-native plants have negatively impacted on biodiversity and ecosystem functions world-wide. Because of the large number of species, their wide distributions and varying degrees of impact, we need a more effective method for prioritizing control strategies for cost-effective investment across heterogeneous landscapes. Here, we develop a prioritization framework that synthesizes scientific data, elicits knowledge from experts and stakeholders to identify control strategies, and appraises the cost-effectiveness of strategies. Our objective was to identify the most cost-effective strategies for reducing the total area dominated by high-impact non-native plants in the Lake Eyre Basin (LEB). We use a case study of the ˜120 million ha Lake Eyre Basin that comprises some of the most distinctive Australian landscapes, including Uluru-Kata Tjuta National Park. More than 240 non-native plant species are recorded in the Lake Eyre Basin, with many predicted to spread, but there are insufficient resources to control all species. Lake Eyre Basin experts identified 12 strategies to control, contain or eradicate non-native species over the next 50 years. The total cost of the proposed Lake Eyre Basin strategies was estimated at AU$1·7 billion, an average of AU$34 million annually. Implementation of these strategies is estimated to reduce non-native plant dominance by 17 million ha – there would be a 32% reduction in the likely area dominated by non-native plants within 50 years if these strategies were implemented. The three most cost-effective strategies were controlling Parkinsonia aculeata, Ziziphus mauritiana and Prosopis spp. These three strategies combined were estimated to cost only 0·01% of total cost of all the strategies, but would provide 20% of the total benefits. Over 50 years, cost-effective spending of AU$2·3 million could eradicate all non-native plant species from the only threatened ecological community within the Lake Eyre Basin, the Great Artesian Basin discharge springs. Synthesis and applications. Our framework, based on a case study of the ˜120 million ha Lake Eyre Basin in Australia, provides a rationale for financially efficient investment in non-native plant management and reveals combinations of strategies that are optimal for different budgets. It also highlights knowledge gaps and incidental findings that could improve effective management of non-native plants, for example addressing the reliability of species distribution data and prevalence of information sharing across states and regions.
Resumo:
Introduction Canadian C spine rule and NEXUS criteria have identified risk factors for cervical spine injury in adults but not for children. PECARN has developed an 8 variable model for cervical spine injury in children. We sought to identify the mechanism, prevalence of PECARN risk factors, injury patterns, and management of severe Paediatric cervical spine injuries presenting to the major children’s hospitals in Brisbane, Australia. Methods This a retrospective study of the children with cervical spine injuries who presented directly or were referred to the major children’s hospitals in Brisbane over 5 years. Results There were 38 patients with 18 male and 20 female.The mean age was 8.6 years. They were divided into two groups according to their age, (Group 1 < =8 years had 18 (47%) patients, while group 2 (9-15 years) had 20 (53%) patients. Motor vehicle related injuries were the most common (61%) in Group 1 while it was sporting injuries (50%) in group 2. All patients in group 1 had upper cervical injury (C0-C2) while subaxial injuries were most common in group 2 (66.6%). 82% of the patients had 2 or more PECARN risk factors. 18 children (47%) had normal neurological assessment at presentation, 6 (16%) had radicular symptoms, 11 (29%) could not be assessed as they had already been intubated due to the severity of the injury, 3 (8%) had incomplete cord injury. 29 (69%) patients had normal neurological assessment at final follow up and 2 children died from their injuries. Conclusion Our study confirms that younger children sustain upper cervical injuries most commonly secondary to motor vehicle accidents, while the older sustain subaxial injuries from sporting activities. The significant prevalence of the PECARN risk factors among this cohort of patients have led to them being incorporated into a protocol at these hospitals used to assess patients with suspected cervical spinal injury.
Resumo:
The effect of tunnel junction resistances on the electronic property and the magneto-resistance of few-layer graphene sheet networks is investigated. By decreasing the tunnel junction resistances, transition from strong localization to weak localization occurs and magneto-resistance changes from positive to negative. It is shown that the positive magneto-resistance is due to Zeeman splitting of the electronic states at the Fermi level as it changes with the bias voltage. As the tunnel junction resistances decrease, the network resistance is well described by 2D weak localization model. Sensitivity of the magneto-resistance to the bias voltage becomes negligible and diminishes with increasing temperature. It is shown 2D weak localization effect mainly occurs inside of the few-layer graphene sheets and the minimum temperature of 5 K in our experiments is not sufficiently low to allow us to observe 2D weak localization effect of the networks as it occurs in 2D disordered metal films. Furthermore, defects inside the few-layer graphene sheets have negligible effect on the resistance of the networks which have small tunnel junction resistances between few-layer graphene sheets
Resumo:
A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage.
Resumo:
This work aims to understand the influence of TiO2 surface structure in Au/TiO2 catalysts on CO oxidation. Au nanoparticles (3 wt%) in the range of 4 to 8 nm were loaded onto four kinds of TiO2 surfaces, which had different surface structures and were synthesized by calcining hydrogen titanate nanotubes at various temperatures and in different atmospheres. The Au catalyst supported on anatase nanorods exhibited the highest activity in CO oxidation at 30 °C among all the five Au/TiO2 catalysts including the reference catalyst of Au/TiO2-P25. X-ray photoelectron spectroscopy (XPS) and infrared emission spectra (IES) results indicate that the anatase nanorods have the most active surface on which water molecules can be strongly adsorbed and OH groups can be formed readily. Theoretical calculation indicates that the surface OH can facilitate the O2 adsorption on the anatase surface. Such active surface features are conducive to the O2 activation and CO oxidation
Resumo:
A simple one-step electrodeposition method was used to construct a glassy carbon electrode (GCE), which has been modified with Cu doped gold nanoparticles (GNPs), i.e. a Cu@AuNPs/GCE. This electrode was characterized with the use of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The eugenol was electrocatalytically oxidized at the Cu@AuNPs/GCE. At this electrode, in comparison with the behavior at the GCE alone, the corresponding oxidation peak current was enhanced and the shift of the oxidation potentials to lower values was observed. Electrochemical behavior of eugenol at the Cu@AuNPs/GCE was investigated with the use of the cyclic voltammetry (CV) technique, and additionally, in order to confirm the electrochemical reaction mechanism for o-methoxy phenols, CVs for catechol, guaiacol and vanillin were investigated consecutively. Based on this work, an electrochemical reaction mechanism for o-methoxy phenols was suggested, and in addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples.
Resumo:
Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10-8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10-6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27-positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.
Resumo:
Based on the topology of C-60 and the resulting non-disjoint nature of the lowest unoccupied molecular orbitals, Ne propose a new model for ferromagnetic exchange in C-60-TDAE. Within the Hubbard model, we find that the ferromagnetic exchange integral is stabilized to first order in the inter-ball transfer integral, while the antiferromagnetic coupling is stabilized only to second order. This difference is adequate to counter the larger phase space available for stabilizing the antiferromagnetic state. Thus, the ground state is found to be ferromagnetic for reasonable inter-ball transfer integrals.