278 resultados para macrophyte


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates phosphorus (P) transport and transformation dynamics in two contrasting sub-catchments of the River Kennel, England. Samples were collected daily under baseflow and hourly under stormflow conditions using autosamplers for 2 years and analysed for a range of determinands (full P fractionation, suspended sediment (SS), cations, pH, alkalinity, temperature and oxygen). Concentrations of SRP, SUP, PP and SS were higher in the flashy River Enborne (means of 0.186, 0.071, 0.101 and 34 mg l(-1), respectively) than the groundwater-fed River Lambourn (0.079, 0.057, 0.028 and 9 mg l(-1), respectively). A seasonal trend in the daily P dataset was evident, with lower concentrations during intermediate flows and the spring (caused by a dilution effect and macrophyte uptake) than during baseflow conditions. However, in the hourly P dataset, highest concentrations were observed during storm events in the autumn and winter (reflecting higher scour with increased capacity to entrain particles). Storm events were more significant in contributing to the total P load in the River Enborne than the River Lambourn, especially during August to October, when dry antecedent conditions were observed in the catchment. Re-suspension of P-rich sediment that accumulated within the channel during summer low flows might account for these observations. It is suggested that a P-calcite co-precipitation mechanism was operating during summer in the River Lambourn, while adsorption by metal oxyhydroxide groups was an important mechanism controlling P fractionation in the River Enborne. The influence of flow conditions and channel storage/release mechanisms on P dynamics in these two lowland rivers is assessed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ramsar site of Lake Uluabat, western Turkey, suffers from eutrophication, urban and industrial pollution and water abstraction, and its water levels are managed artificially. Here we combine monitoring and palaeolimnological. techniques to investigate spatial and temporal limnological variability and ecosystem impact, using an ostracod and mollusc survey to strengthen interpretation of the fossil record. A combination of low invertebrate Biological Monitoring Working Party scores (<10) and the dominance of eutrophic diatoms in the modern lake confirms its poor ecological status. Palaeolimnological analysis of recent (last >200 yr) changes in organic and carbonate content, diatoms, stable isotopes, ostracods and molluscs in a lake sediment core (UL20A) indicates a 20th century trend towards increased sediment accumulation rates and eutrophication which was probably initiated by deforestation and agriculture. The most marked ecological shift occurs in the early 1960s, however. A subtle rise in diatom-inferred total phosphorus and an inferred reduction in submerged aquatic macrophyte cover accompanies a major increase in sediment accumulation rate. An associated marked shift in ostracod stable isotope data indicative of reduced seasonality and a change in hydrological input suggests major impact from artificial water management practices, all of which appears to have culminated in the sustained loss of submerged macrophytes since 2000. The study indicates it is vital to take both land-use and water management practices into account in devising restoration strategies. in a wider context, the results have important implications for the conservation of shallow karstic lakes, the functioning of which is still poorly understood. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an assessment of the nitrogen and phosphorus dynamics of the River Kennet in the south east of England. The Kennet catchment (1200 km(2)) is a predominantly groundwater fed river impacted by agricultural and sewage sources of nutrient (nitrogen and phosphorus) pollution. The results from a suite of simulation models are integrated to assess the key spatial and temporal variations in the nitrogen (N) and phosphorus (P) chemistry, and the influence of changes in phosphorous inputs from a Sewage Treatment Works on the macrophyte and epiphyte growth patterns. The models used are the Export Co-efficient model, the Integrated Nitrogen in Catchments model, and a new model of in-stream phosphorus and macrophyte dynamics: the 'Kennet' model. The paper concludes with a discussion on the present state of knowledge regarding the water quality functioning, future research needs regarding environmental modelling and the use of models as management tools for large, nutrient impacted riverine systems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of eutrophication in river systems is poorly understood given the complex relationship between fixed plants, algae, hydrodynamics, water chemistry and solar radiation. However there is a pressing need to understand the relationship between the ecological status of rivers and the controlling environmental factors to help the reasoned implementation of the Water Framework Directive and Catchment Sensitive Farming in the UK. This research aims to create a dynamic, process-based, mathematical in-stream model to simulate the growth and competition of different vegetation types (macrophytes, phytoplankton and benthic algae) in rivers. The model, applied to the River Frome (Dorset, UK), captured well the seasonality of simulated vegetation types (suspended algae, macrophytes, epiphytes, sediment biofilm). Macrophyte results showed that local knowledge is important for explaining unusual changes in biomass. Fixed algae simulations indicated the need for the more detailed representation of various herbivorous grazer groups, however this would increase the model complexity, the number of model parameters and the required observation data to better define the model. The model results also highlighted that simulating only phytoplankton is insufficient in river systems, because the majority of the suspended algae have benthic origin in short retention time rivers. Therefore, there is a need for modelling tools that link the benthic and free-floating habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A great deal of work recently has focused on suspended and bedload sediment transport, driven primarily by interest in contaminant transfer. However, uncertainties regarding the role of storm events, macrophyte beds and interactions between the two phases of sediment still exist. This paper compares two study sites within the same catchment whose geology varies significantly. The differences in hydrology, suspended sediment (SS) transport and bed load transport that this causes are examined. In addition, a method to predict the mobilization of different size fractions of sediment during given flows is investigated using critical entrainment thresholds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explored the potential for using Pediastrum (Meyen), a genus of green alga commonly found in palaeoecological studies, as a proxy for lake-level change in tropical South America. The study site, Laguna La Gaiba (LLG) (17°45′S, 57°40′W), is a broad, shallow lake located along the course of the Paraguay River in the Pantanal, a 135,000-km2 tropical wetland located mostly in western Brazil, but extending into eastern Bolivia. Fourteen surface sediment samples were taken from LLG across a range of lake depths (2-5.2 m) and analyzed for Pediastrum. We found seven species, of which P. musteri (Tell et Mataloni), P. argentiniense (Bourr. et Tell), and P. cf. angulosum (Ehrenb.) ex Menegh. were identified as potential indicators of lake level. Results of the modern dataset were applied to 31 fossil Pediastrum assemblages spanning the early Holocene (12.0 kyr BP) to present to infer past lake level changes qualitatively. Early Holocene (12.0-9.8 kyr BP) assemblages do not show a clear signal, though abundance of P. simplex (Meyen) suggests relatively high lake levels. Absence of P. musteri, characteristic of deep, open water, and abundance of macrophyte-associated taxa indicate lake levels were lowest from 9.8 to 3.0 kyr BP. A shift to wetter conditions began at 4.4 kyr BP, indicated by the appearance of P. musteri, though inferred lake levels did not reach modern values until 1.4 kyr BP. The Pediastrum-inferred mid-Holocene lowstand is consistent with lower precipitation, previously inferred using pollen from this site, and is also in agreement with evidence for widespread drought in the South American tropics during the middle Holocene. An inference for steadily increasing lake level from 4.4 kyr BP to present is consistent with diatom-inferred water level rise at Lake Titicaca, and demonstrates coherence with the broad pattern of increasing monsoon strength from the late Holocene until present in tropical South America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lagoon of Islands was a unique ecosystem. Damming the lagoon in 1964 caused the decline of the ecosystem, destroying the original vegetation and, eventually, rendering the lagoon eutrophic. While this took place the lagoon was colonised by a macrophyte not previously noticed in the lagoon. In an effort to restore acceptable water quality, restoration of macrophyte cover was encouraged by hydrological manipulation. Recent investigations have revealed that one of the original dominant macrophyte species is recolonising the lagoon, creating an alternative management option for the lagoon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Algal blooms are a management concern in shallow water bodies. This project investigated the use of artificial substrates to enhance biofilm growth and shift primary production from the open water to artificial surfaces. This resulted in a shift from algal dominated wetland back to a clear water macrophyte dominated wetland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intermittent wetlands are particularly at risk from secondary salinisation because salts are concentrated during drawdown. We conducted a field experiment to examine the effect of adding salt at two different concentrations (to achieve nominal conductivities of 1000 μS cm–1 (low salt) and 3000 μS cm–1 (high salt)) on water quality, freshwater plants and epiphytic diatoms in an intermittent wetland during a 3.3-month drawdown. Conductivity increased to 3000 and 8500 μS cm–1 in low-salt and high-salt treatments respectively. Salt was apparently lost to the sediments, causing protons to be released from the sediments and reducing water column pH from 6.9 to 5.5 in the low-salt treatment and to 4.0 in the high-salt treatments. Forty days after adding the salt, biomass, %cover and flower production in Potamogeton cheesmanii were significantly reduced, whereas Amphibromus fluitans was not significantly affected. The salt effect on Triglochin procera was intermediate between the other two macrophytes. Significant reductions in the density, species richness and diversity of epiphytic diatoms occurred in the high-salt, but not in the low-salt, treatments. Our work shows that increases in salinity, and thus conductivity (up to 8500 μS cm–1), in low-alkalinity intermittent wetlands can change water quality, with significant adverse effects on some macrophyte and diatom communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At least two distinct trade-offs are thought to facilitate higher diversity in productive plant communities under herbivory. Higher investment in defence and enhanced colonization potential may both correlate with decreased competitive ability in plants. Herbivory may thus promote coexistence of plant species exhibiting divergent life history strategies. How different seasonally tied herbivore assemblages simultaneously affect plant community composition and diversity is, however, largely unknown. Two contrasting types of herbivory can be distinguished in the aquatic vegetation of the shallow lake Lauwersmeer. In summer, predominantly above-ground tissues are eaten, whereas in winter, waterfowl forage on below-ground plant propagules. In a 4-year exclosure study we experimentally separated above-ground herbivory by waterfowl and large fish in summer from below-ground herbivory by Bewick’s swans in winter. We measured the individual and combined effects of both herbivory periods on the composition of the three-species aquatic plant community. Herbivory effect sizes varied considerably from year to year. In 2 years herbivore exclusion in summer reinforced dominance of Potamogeton pectinatus with a concomitant decrease in Potamogeton pusillus, whereas no strong, unequivocal effect was observed in the other 2 years. Winter exclusion, on the other hand, had a negative effect on Zannichellia palustris, but the effect size differed considerably between years. We suggest that the colonization ability of Z. palustris may have enabled this species to be more abundant after reduction of P. pectinatus tuber densities by swans. Evenness decreased due to herbivore exclusion in summer. We conclude that seasonally tied above- and below-ground herbivory may each stimulate different components of a macrophyte community as they each favoured a different subordinate plant species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared to terrestrial environments, grazing intensity on belowground plant parts may be particularly strong in aquatic environments, which may have great effects on plant-community structure. We observed that the submerged macrophyte, Potamogeton pectinatus, which mainly reproduces with tubers, often grows at intermediate water depth and that P. perfoliatus, which mainly reproduces with rhizomes and turions, grows in either shallow or deep water. One mechanism behind this distributional pattern may be that swans prefer to feed on P. pectinatus tubers at intermediate water depths. We hypothesised that when swans feed on tubers in the sediment, P. perfoliatus rhizomes and turions may be damaged by the uprooting, whereas the small round tubers of P. pectinatus that escaped herbivory may be more tolerant to this bioturbation. In spring 2000, we transplanted P. perfoliatus rhizomes into a P. pectinatus stand and followed growth in plots protected and unprotected, respectively, from bird foraging. Although swan foraging reduced tuber biomass in unprotected plots, leading to lower P. pectinatus density in spring 2001, this species grew well both in protected and unprotected plots later that summer. In contrast, swan grazing had a dramatic negative effect on P. perfoliatus that persisted throughout the summer of 2001, with close to no plants in the unprotected plots and high densities in the protected plots. Our results demonstrate that herbivorous waterbirds may play a crucial role in the distribution and prevalence of specific plant species. Furthermore, since their grazing benefitted their preferred food source, the interaction between swans and P. pectinatus may be classified as ecologically mutualistic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of aquatic macrophytes in stimulating biodiversity and maintaining clear waters is currently undisputed. The management of (eutrophic) shallow waters is therefore often directed at (re-)establishing macrophyte domination. In contrast, the role of water birds has long been considered of minor importance for the functioning of fresh water ecosystems. Indeed, in terms of biomass and production, water birds constitute only a minor part of these systems. However, water birds may graze heavily on water plants under certain circumstances, and the question arises whether herbivorous water birds have an important indirect effect on shallow fresh water systems. Mainly illustrated with the interaction between Bewick’s Swans and Fennel Pondweed, we present data on the role that water plants may play in the life of water birds and how water birds may impact water plants’ fitness in terms of survival, production, dispersal and competitive ability. It appears that water plants may be crucial for water birds during periods of high-energy requirements, such as migration. Despite the plants’ costs associated with water bird grazing, the interaction between water birds and water plants varies in nature from an apparent predator–prey relationship to a mutually beneficial interaction depending on the context and the perspective. For the case of the Bewick’s Swan–Fennel Pondweed interaction, regular bird grazing is sustainable and may actually favour the plant’s dispersal. Thus, Bewick’s Swans themselves may in fact play a crucial role in establishing and maintaining the Fennel Pondweed rich staging sites between the swans’ wintering and breeding grounds, which are vital for the swans’ successful migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wetlands are among the most important ecosystems on Earth both in terms of productivity and biodiversity, but also as a source of the greenhouse gas CH4. Microbial processes catalyzing nutrient recycling and CH4 production are controlled by sediment physico-chemistry, which is in turn affected by plant activity and the foraging behaviour of herbivores. We performed field and laboratory experiments to evaluate the direct effect of herbivores on soil microbial activity and their indirect effects as the consequence of reduced macrophyte density, using migratory Bewick’s swans (Cygnus columbianus bewickii Yarrell) feeding on fennel pondweed (Potamogeton pectinatus L.) tubers as a model system. A controlled foraging experiment using field enclosures indicated that swan bioturbation decreases CH4 production, through a decrease in the activity of methanogenic Archaea and an increased rate of CH4 oxidation in the bioturbated sediment. We also found a positive correlation between tuber density (a surrogate of plant density during the previous growth season) and CH4 production activity. A laboratory experiment showed that sediment sterilization enhances pondweed growth, probably due to elimination of the negative effects of microbial activity on plant growth. In summary, the bioturbation caused by swan grazing modulates CH4 cycling by means of both direct and indirect (i.e. plant-mediated) effects with potential consequences for CH4 emission from wetland systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nyirkai-Hany wetland reconstruction area in northwestern Hungary is now designated as a Ramsar and a Natura 2000 site. It was created in 2001–2002 by the Fertő-Hanság National Park Directorate to restore a part of the formerly drained large wetland called Hanság and to offer waterbirds a suitable habitat for feeding and breeding. We focused on this aim of the restoration project and studied the temporal and spatial variation in abundance of birds and their invertebrate prey in this newly created wetland. From April 2007 until May 2008, we sampled plankton, nekton and benthos of different habitats monthly and monitored waterbirds weekly on the three different areas of the Nyirkai-Hany. During our investigations, 135 invertebrate and 53 waterbird species were recorded. Benthos and macrophyte decomposition accelerating guilds were the most abundant waterbird guilds—besides the dominant grazing importer material transporter guild, represented primarily by geese—in the Nyirkai-Hany. Zooplankton assemblages primarily consisted of small species not easily used as a food by planktivorous waterbirds. The low density of zoobenthic biomass and the small extent of shallow water mudflats probably accounted for the scarcity of the bioturbing guild group of birds. Nektonic biomass varied greatly among locations having different vegetation types, was greatest in the shallow water areas dominated by Typha, Carex and Phragmites species and lowest at offshore vegetation-free sites. Chironomids, mayflies and odonates were especially abundant and their biomass significantly correlated with several waterbird species, mainly belonging to the macrophyte decomposition accelerating guild (e.g. Anas platyrynchos, Fulica atra). This guild itself, which has increased in abundance in recent years, showed an exceptionally strong correlation with odonate abundance. These results indicate the growing importance of the Nyirkai-Hany wetland area as a foraging site for waterbirds.