946 resultados para méthode level-set


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Turbulent fluctuations in the vicinity of the water free surface along a flat, vertically oriented surface-piercing plate are studied experimentally using a laboratory-scale experiment. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section between rollers. The belt is launched from rest with an acceleration of up to 3-g in order to quickly reach steady state velocity. This creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along a flat-sided ship moving at the same velocity, with a length equivalent to the length of belt that has passed the measurement region since the belt motion began. Surface profile measurements in planes normal to the belt surface are conducted using cinematic Laser Induced Fluorescence and quantitative surface profiles are extracted at each instant in time. Using these measurements, free surface fluctuations are examined and the propagation behavior of these free surface ripples is studied. It is found that free surface fluctuations are generated in a region close to the belt surface, where sub-surface velocity fluctuations influence the behavior of these free surface features. These rapidly-changing surface features close to the belt appear to lead to the generation of freely-propagating waves far from the belt, outside the influence of the boundary layer. Sub-surface PIV measurements are performed in order to study the modification of the boundary layer flow field due to the effects of the water free surface. Cinematic planar PIV measurements are performed in horizontal planes parallel to the free surface by imaging the flow from underneath the tank, providing streamwise and wall-normal velocity fields. Additional planar PIV experiments are performed in vertical planes parallel to the belt surface in order to study the bahvior of streamwise and vertical velocity fields. It is found that the boundary layer grows rapidly near the free surface, leading to an overall thicker boundary layer close to the surface. This rapid boundary layer growth appears to be linked to a process of free surface bursting, the sudden onset of free surface fluctuations. Cinematic white light movies are recorded from beneath the water surface in order to determine the onset location of air entrainment. In addition, qualitative observations of these processes are made in order to determine the mechanisms leading to air entrainment present in this flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Aim: Maternal morbidity and mortality statistics remain unacceptably high in Malawi. Prominent among the risk factors in the country is anaemia in pregnancy, which generally results from nutritional inadequacy (particularly iron deficiency) and malaria, among other factors. This warrants concerted efforts to increase iron intake among reproductive-age women. This study, among women in Malawi, examined factors determining intake of supplemental iron for at least 90 days during pregnancy. Methods: A weighted sample of 10,750 women (46.7%), from the 23,020 respondents of the 2010 Malawi Demographic and Health Survey (MDHS), were utilized for the study. Univariate, bivariate, and regression techniques were employed. While univariate analysis revealed the percent distributions of all variables, bivariate analysis was used to examine the relationships between individual independent variables and adherence to iron supplementation. Chi-square tests of independence were conducted for categorical variables, with the significance level set at P < 0.05. Two binary logistic regression models were used to evaluate the net effect of independent variables on iron supplementation adherence. Results: Thirty-seven percent of the women adhered to the iron supplementation recommendations during pregnancy. Multivariate analysis indicated that younger age, urban residence, higher education, higher wealth status, and attending antenatal care during the first trimester were significantly associated with increased odds of taking iron supplementation for 90 days or more during pregnancy (P < 0.01). Conclusions: The results indicate low adherence to the World Health Organization’s iron supplementation recommendations among pregnant women in Malawi, and this contributes to negative health outcomes for both mothers and children. Focusing on education interventions that target populations with low rates of iron supplement intake, including campaigns to increase the number of women who attend antenatal care clinics in the first trimester, are recommended to increase adherence to iron supplementation recommendations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the wide swath of applications where multiphase fluid contact lines exist, there is still no consensus on an accurate and general simulation methodology. Most prior numerical work has imposed one of the many dynamic contact-angle theories at solid walls. Such approaches are inherently limited by the theory accuracy. In fact, when inertial effects are important, the contact angle may be history dependent and, thus, any single mathematical function is inappropriate. Given these limitations, the present work has two primary goals: 1) create a numerical framework that allows the contact angle to evolve naturally with appropriate contact-line physics and 2) develop equations and numerical methods such that contact-line simulations may be performed on coarse computational meshes.

Fluid flows affected by contact lines are dominated by capillary stresses and require accurate curvature calculations. The level set method was chosen to track the fluid interfaces because it is easy to calculate interface curvature accurately. Unfortunately, the level set reinitialization suffers from an ill-posed mathematical problem at contact lines: a ``blind spot'' exists. Standard techniques to handle this deficiency are shown to introduce parasitic velocity currents that artificially deform freely floating (non-prescribed) contact angles. As an alternative, a new relaxation equation reinitialization is proposed to remove these spurious velocity currents and its concept is further explored with level-set extension velocities.

To capture contact-line physics, two classical boundary conditions, the Navier-slip velocity boundary condition and a fixed contact angle, are implemented in direct numerical simulations (DNS). DNS are found to converge only if the slip length is well resolved by the computational mesh. Unfortunately, since the slip length is often very small compared to fluid structures, these simulations are not computationally feasible for large systems. To address the second goal, a new methodology is proposed which relies on the volumetric-filtered Navier-Stokes equations. Two unclosed terms, an average curvature and a viscous shear VS, are proposed to represent the missing microscale physics on a coarse mesh.

All of these components are then combined into a single framework and tested for a water droplet impacting a partially-wetting substrate. Very good agreement is found for the evolution of the contact diameter in time between the experimental measurements and the numerical simulation. Such comparison would not be possible with prior methods, since the Reynolds number Re and capillary number Ca are large. Furthermore, the experimentally approximated slip length ratio is well outside of the range currently achievable by DNS. This framework is a promising first step towards simulating complex physics in capillary-dominated flows at a reasonable computational expense.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article refines Lipsky’s (1980) assertion that lacking resources negatively affect output performance. It uses fuzzy-set Qualitative Comparative Analysis to analyse the nuanced interplay of contextual and individual determinants of the output performance of veterinary inspectors as street-level bureaucrats in Switzerland. Moving ‘beyond Lipsky’, the study builds on recent theoretical contributions and a systematic comparison across organizational contexts. Against a widespread assumption, output performance is not all about the resources. The impact of perceived available resources hinges on caseloads, which prove to be more decisive. These contextual factors interact with individual attitudes emerging from diverse public accountabilities. The results contextualize the often-emphasized importance of worker-client interaction. In a setting where clients cannot escape the interaction, street-level bureaucrats are not primarily held accountable by them. Studies of output performance should thus sensibly consider gaps between what is being demanded of and offered to street-level bureaucrats, and the latter’s multiple embeddedness.