138 resultados para lycopene


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Entre os produtos comercializados a nível mundial, o café é um dos mais valiosos, sendo apenas superado pelo petróleo em termos de movimentações financeiras. Assim, torna-se indiscutível a importância do café na política e na economia de muitos países, pois o seu cultivo, processamento, comercialização, transporte e mercado criam milhões de empregos por todo o mundo. A composição química do café constitui um parâmetro fundamental na distinção das diferentes variedades deste produto, recorrendo-se frequentemente à análise de compostos como a cafeína, o ácido hidroxicinâmico e o ácido clorogénico, entre outros. O principal objetivo deste trabalho focou-se no estudo do perfil dos compostos bioativos presentes em grãos de café verde provenientes de Cabo Verde e das inerentes propriedades antioxidantes. Mais concretamente, procedeu-se à quantificação dos compostos bioativos com maior importância no café, como é o caso dos fenólicos e flavonoides totais, das antocianinas e dos carotenoides. A quantidade de compostos fenólicos totais encontrados na amostra dos grãos de café verde foi 4,855 mg/g. Quanto à quantidade de flavonoides totais, foi 41,2 mg/g e de antocianinas 0,465 mg/g. Relativamente aos carotenoides estudados, a clorofila a apresenta-se em quantidade igual a 1,5×10 mg/g, a clorofila b, 1,6×10 mg/g, o licopeno, 6×10 mg/g e o β-caroteno aparenta ser inexistente nesta amostra. A quantificação destes compostos bioativos comprovou a sua presença na amostra de café verde e, consequentemente, evidenciou os potenciais benefícios que este produto traz para a saúde, sendo a capacidade antioxidante o mais prevalente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill.) is the second most important vegetable crop worldwide and a rich source of hydrophilic (H) and lipophilic (L) antioxidants. The H fraction is constituted mainly by ascorbic acid and soluble phenolic compounds, while the L fraction contains carotenoids (mostly lycopene), tocopherols, sterols and lipophilic phenolics [1,2]. To obtain these antioxidants it is necessary to follow appropriate extraction methods and processing conditions. In this regard, this study aimed at determining the optimal extraction conditions for H and L antioxidants from a tomato surplus. A 5-level full factorial design with 4 factors (extraction time (I, 0-20 min), temperature (T, 60-180 •c), ethanol percentage (Et, 0-100%) and solid/liquid ratio (S/L, 5-45 g!L)) was implemented and the response surface methodology used for analysis. Extractions were carried out in a Biotage Initiator Microwave apparatus. The concentration-time response methods of crocin and P-carotene bleaching were applied (using 96-well microplates), since they are suitable in vitro assays to evaluate the antioxidant activity of H and L matrices, respectively [3]. Measurements were carried out at intervals of 3, 5 and 10 min (initiation, propagation and asymptotic phases), during a time frame of 200 min. The parameters Pm (maximum protected substrate) and V m (amount of protected substrate per g of extract) and the so called IC50 were used to quantify the response. The optimum extraction conditions were as follows: r~2.25 min, 7'=149.2 •c, Et=99.1 %and SIL=l5.0 giL for H antioxidants; and t=l5.4 min, 7'=60.0 •c, Et=33.0% and S/L~l5.0 g/L for L antioxidants. The proposed model was validated based on the high values of the adjusted coefficient of determination (R2.wi>0.91) and on the non-siguificant differences between predicted and experimental values. It was also found that the antioxidant capacity of the H fraction was much higher than the L one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Cassava (Manihot esculenta Crantz) storage root provides a staple food source for millions of people worldwide. Increasing the carotenoid content in storage root of cassava could provide improved nutritional and health benefits. Because carotenoid accumulation has been associated with storage root color, this study characterized carotenoid profiles, and abundance of key transcripts associated with carotenoid biosynthesis, from 23 landraces of cassava storage root ranging in color from white-to-yellow-to-pink. This study provides important information to plant breeding programs aimed at improving cassava storage root nutritional quality. RESULTS: Among the 23 landraces, five carotenoid types were detected in storage root with white color, while carotenoid types ranged from 1 to 21 in storage root with pink and yellow color. The majority of storage root in these landraces ranged in color from pale-to-intense yellow. In this color group, total ß-carotene, containing all-E-, 9-Z-, and 13-Z-ß-carotene isomers, was the major carotenoid type detected, varying from 26.13 to 76.72 %. Although no ?-carotene was observed, variable amounts of a ?-ring derived xanthophyll, lutein, was detected; with greater accumulation of ?-ring xanthophylls than of ß-ring xanthophyll. Lycopene was detected in a landrace (Cas51) with pink color storage root, but it was not detected in storage root with yellow color. Based on microarray and qRT-PCR analyses, abundance of transcripts coding for enzymes involved in carotenoid biosynthesis were consistent with carotenoid composition determined by contrasting HPLC-Diode Array profiles from storage root of landraces IAC12, Cas64, and Cas51. Abundance of transcripts encoding for proteins regulating plastid division were also consistent with the observed differences in total ß-carotene accumulation. CONCLUSIONS: Among the 23 cassava landraces with varying storage root color and diverse carotenoid types and profiles, landrace Cas51 (pink color storage root) had low LYCb transcript abundance, whereas landrace Cas64 (intense yellow storage root) had decreased HYb transcript abundance. These results may explain the increased amounts of lycopene and total ß-carotene observed in landraces Cas51 and Cas64, respectively. Overall, total carotenoid content in cassava storage root of color class representatives were associated with spatial patterns of secondary growth, color, and abundance of transcripts linked to plastid division. Finally, a partial carotenoid biosynthesis pathway is proposed.