943 resultados para lower bound
Resumo:
The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load (P-uT) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.
Resumo:
By applying the lower bound theorem of limit analysis in conjunction with finite elements and nonlinear optimization, the bearing capacity factor N has been computed for a rough strip footing by incorporating pseudostatic horizontal seismic body forces. As compared with different existing approaches, the present analysis is more rigorous, because it does not require an assumption of either the failure mechanism or the variation of the ratio of the shear to the normal stress along the footing-soil interface. The magnitude of N decreases considerably with an increase in the horizontal seismic acceleration coefficient (kh). With an increase in kh, a continuous spread in the extent of the plastic zone toward the direction of the horizontal seismic body force is noted. The results obtained from this paper have been found to compare well with the solutions reported in the literature. (C) 2013 American Society of Civil Engineers.
Resumo:
The ultimate bearing capacity of strip foundations in the presence of inclined groundwater flow, considering both upward and downward flow directions, has been determined by using the lower bound finite-element limit analysis. A numerical solution has been generated for both smooth and rough footings placed on frictional soils. A correction factor (f gamma), which needs to be multiplied with the N gamma-term, has been computed to account for groundwater seepage. The variation of f gamma has been obtained as a function of the hydraulic gradient (i) for various inclinations of groundwater flow. For a given magnitude of i, there exists a certain critical inclination of the flow for which the value of f gamma is minimized. With an upward flow, for all flow inclinations, the magnitude of f gamma always reduces with an increase in the value of i. An example has also been provided to illustrate the application of the obtained results when designing foundations in the presence of groundwater seepage.
Resumo:
This paper considers the design of a power-controlled reverse channel training (RCT) scheme for spatial multiplexing (SM)-based data transmission along the dominant modes of the channel in a time-division duplex (TDD) multiple-input and multiple-output (MIMO) system, when channel knowledge is available at the receiver. A channel-dependent power-controlled RCT scheme is proposed, using which the transmitter estimates the beamforming (BF) vectors required for the forward-link SM data transmission. Tight approximate expressions for 1) the mean square error (MSE) in the estimate of the BF vectors, and 2) a capacity lower bound (CLB) for an SM system, are derived and used to optimize the parameters of the training sequence. Moreover, an extension of the channel-dependent training scheme and the data rate analysis to a multiuser scenario with M user terminals is presented. For the single-mode BF system, a closed-form expression for an upper bound on the average sum data rate is derived, which is shown to scale as ((L-c - L-B,L- tau)/L-c) log logM asymptotically in M, where L-c and L-B,L- tau are the channel coherence time and training duration, respectively. The significant performance gain offered by the proposed training sequence over the conventional constant-power orthogonal RCT sequence is demonstrated using Monte Carlo simulations.
Resumo:
A joint Maximum Likelihood (ML) estimation algorithm for the synchronization impairments such as Carrier Frequency Offset (CFO), Sampling Frequency Offset (SFO) and Symbol Timing Error (STE) in single user MIMO-OFDM system is investigated in this work. A received signal model that takes into account the nonlinear effects of CFO, SFO, STE and Channel Impulse Response (CIR) is formulated. Based on the signal model, a joint ML estimation algorithm is proposed. Cramer-Rao Lower Bound (CRLB) for the continuous parameters CFO and SFO is derived for the cases of with and without channel response effects and is used to compare the effect of coupling between different estimated parameters. The performance of the estimation method is studied through numerical simulations.
Resumo:
Tight fusion frames which form optimal packings in Grassmannian manifolds are of interest in signal processing and communication applications. In this paper, we study optimal packings and fusion frames having a specific structure for use in block sparse recovery problems. The paper starts with a sufficient condition for a set of subspaces to be an optimal packing. Further, a method of using optimal Grassmannian frames to construct tight fusion frames which form optimal packings is given. Then, we derive a lower bound on the block coherence of dictionaries used in block sparse recovery. From this result, we conclude that the Grassmannian fusion frames considered in this paper are optimal from the block coherence point of view. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper considers the problem of channel estimation at the transmitter in a spatial multiplexing-based Time Division Duplex (TDD) Multiple Input Multiple Output (MIMO) system with perfect CSIR. A novel channel-dependent Reverse Channel Training (RCT) sequence is proposed, using which the transmitter estimates the beamforming vectors for forward link data transmission. This training sequence is designed based on the following two metrics: (i) a capacity lower bound, and (ii) the mean square error in the estimate. The performance of the proposed training scheme is analyzed and is shown to significantly outperform the conventional orthogonal RCT sequence. Also, in the case where the transmitter uses water-filling power allocation for data transmission, a novel RCT sequence is proposed and optimized with respect to the MSE in estimating the transmit covariance matrix.
Resumo:
In this paper, we consider signal detection in nt × nr underdetermined MIMO (UD-MIMO) systems, where i) nt >; nr with a overload factor α = nt over nr >; 1, ii) nt symbols are transmitted per channel use through spatial multiplexing, and iii) nt, nr are large (in the range of tens). A low-complexity detection algorithm based on reactive tabu search is considered. A variable threshold based stopping criterion is proposed which offers near-optimal performance in large UD-MIMO systems at low complexities. A lower bound on the maximum likelihood (ML) bit error performance of large UD-MIMO systems is also obtained for comparison. The proposed algorithm is shown to achieve BER performance close to the ML lower bound within 0.6 dB at an uncoded BER of 10-2 in 16 × 8 V-BLAST UD-MIMO system with 4-QAM (32 bps/Hz). Similar near-ML performance results are shown for 32 × 16, 32 × 24 V-BLAST UD-MIMO with 4-QAM/16-QAM as well. A performance and complexity comparison between the proposed algorithm and the λ-generalized sphere decoder (λ-GSD) algorithm for UD-MIMO shows that the proposed algorithm achieves almost the same performance of λ-GSD but at a significantly lesser complexity.
Resumo:
We consider the problem of characterizing the minimum average delay, or equivalently the minimum average queue length, of message symbols randomly arriving to the transmitter queue of a point-to-point link which dynamically selects a (n, k) block code from a given collection. The system is modeled by a discrete time queue with an IID batch arrival process and batch service. We obtain a lower bound on the minimum average queue length, which is the optimal value for a linear program, using only the mean (λ) and variance (σ2) of the batch arrivals. For a finite collection of (n, k) codes the minimum achievable average queue length is shown to be Θ(1/ε) as ε ↓ 0 where ε is the difference between the maximum code rate and λ. We obtain a sufficient condition for code rate selection policies to achieve this optimal growth rate. A simple family of policies that use only one block code each as well as two other heuristic policies are shown to be weakly optimal in the sense of achieving the 1/ε growth rate. An appropriate selection from the family of policies that use only one block code each is also shown to achieve the optimal coefficient σ2/2 of the 1/ε growth rate. We compare the performance of the heuristic policies with the minimum achievable average queue length and the lower bound numerically. For a countable collection of (n, k) codes, the optimal average queue length is shown to be Ω(1/ε). We illustrate the selectivity among policies of the growth rate optimality criterion for both finite and countable collections of (n, k) block codes.
Resumo:
We introduce k-stellated spheres and consider the class W-k(d) of triangulated d-manifolds, all of whose vertex links are k-stellated, and its subclass W-k*; (d), consisting of the (k + 1)-neighbourly members of W-k(d). We introduce the mu-vector of any simplicial complex and show that, in the case of 2-neighbourly simplicial complexes, the mu-vector dominates the vector of Betti numbers componentwise; the two vectors are equal precisely for tight simplicial complexes. We are able to estimate/compute certain alternating sums of the components of the mu-vector of any 2-neighbourly member of W-k(d) for d >= 2k. As a consequence of this theory, we prove a lower bound theorem for such triangulated manifolds, and we determine the integral homology type of members of W-k*(d) for d >= 2k + 2. As another application, we prove that, when d not equal 2k + 1, all members of W-k*(d) are tight. We also characterize the tight members of W-k*(2k + 1) in terms of their kth Betti numbers. These results more or less answer a recent question of Effenberger, and also provide a uniform and conceptual tightness proof for all except two of the known tight triangulated manifolds. We also prove a lower bound theorem for homology manifolds in which the members of W-1(d) provide the equality case. This generalizes a result (the d = 4 case) due to Walkup and Kuhnel. As a consequence, it is shown that every tight member of W-1 (d) is strongly minimal, thus providing substantial evidence in favour of a conjecture of Kuhnel and Lutz asserting that tight homology manifolds should be strongly minimal. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We have introduced the weight of a group which has a presentation with number of relations is at most the number of generators. We have shown that the number of facets of any contracted pseudotriangulation of a connected closed 3-manifold M is at least the weight of the fundamental group of M. This lower bound is sharp for the 3-manifolds RP3, L(3, 1), L(5, 2), S-1 x S-1 x S-1, S-2 x S-1, S-2 (x) under bar S-1 and S-3/Q(8), where Q(8) is the quaternion group. Moreover, there is a unique such facet minimal pseudotriangulation in each of these seven cases. We have also constructed contracted pseudotriangulations of L(kq - 1, q) with 4(q + k - 1) facets for q >= 3, k >= 2 and L(kq + 1, q) with 4(q + k) facets for q >= 4, k >= 1. By a recent result of Swartz, our pseudotriangulations of L(kg + 1, q) are facet minimal when kg + 1 are even. In 1979, Gagliardi found presentations of the fundamental group of a manifold M in terms of a contracted pseudotriangulation of M. Our construction is the converse of this, namely, given a presentation of the fundamental group of a 3-manifold M, we construct a contracted pseudotriangulation of M. So, our construction of a contracted pseudotriangulation of a 3-manifold M is based on a presentation of the fundamental group of M and it is computer-free.
Resumo:
By incorporating the variation of peak soil friction angle (phi) with mean principal stress (sigma(m)), the effect of pipe diameter (D) on the vertical uplift resistance of a long horizontal pipeline embedded in sand has been investigated. The analysis has been performed by using the lower bound finite-element limit analysis in combination with nonlinear optimization. Three well-defined phi versus sigma(m) curves reported from literature for different sands have been used. It is observed that for a given embedment ratio, with an increase in pipe diameter, the magnitude of the uplift factor (F-gamma) reduces quite significantly, which indicates the importance of considering scale effects while designing buried pipe lines. The scale effects have been found to become even more substantial with an increase in the embedment ratio. The analysis compares well with various theoretical results reported from literature. On the other hand, as compared to available centrifuge test results, the present analysis has been found to provide quite a higher magnitude of the uplift resistance when the theoretical prediction is based on peak soil friction angle. However, if the theoretical analysis is performed by using the friction angle that accounts for the progressive shear failure, the difference between the theoretical and centrifuge test results decreases quite significantly.(C) 2013 American Society of Civil Engineers.
Resumo:
Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely the Cartesian product, the lexicographic product and the strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) a parts per thousand currency sign 2r(G) + c, where r(G) denotes the radius of G and . In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius 1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight up to additive constants. The proofs are constructive and hence yield polynomial time -factor approximation algorithms.
Resumo:
The vertical uplift resistance of long pipes buried in sands and subjected to pseudostatic seismic forces has been computed by using the lower-bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The soil mass is assumed to follow the Mohr-Coulomb failure criterion and an associated flow rule. The failure load is expressed in the form of a nondimensional uplift factor F-gamma. The variation of F-gamma is plotted as a function of the embedment ratio of the pipe, horizontal seismic acceleration coefficient (k(h)), and soil friction angle (phi). The magnitude of F-gamma is found to decrease continuously with an increase in the horizontal seismic acceleration coefficient. The reduction in the uplift resistance becomes quite significant, especially for greater values of embedment ratios and lower values of friction angle. The predicted uplift resistance was found to compare well with the existing results reported from the literature. (C) 2014 American Society of Civil Engineers.
Resumo:
The uplift resistance of pipelines buried in sands, in the presence of inclined groundwater flow, considering both upward and downward flow directions, has been determined by using the lower bound finite elements limit analysis in conjunction with nonlinear optimization. A correction factor (f (gamma) ), which needs to be multiplied with the uplift factor (F (gamma) ), has been computed to account for groundwater seepage. The variation of f (gamma) has been obtained as a function of i(gamma (w) /gamma (sub) ) for different horizontal inclinations (theta) of groundwater flow; where i = absolute magnitude of hydraulic gradient along the direction of flow, gamma (w) is the unit weight of water and gamma (sub) is the submerged unit weight of soil mass. For a given magnitude of i, there exists a certain critical value of theta for which the magnitude of f (gamma) becomes the minimum. An example has also been presented to illustrate the application of the results obtained for designing pipelines in presence of groundwater seepage.