934 resultados para lock range
Resumo:
The hot-working characteristics of Zircaloy-2 have been studied in the temperature range of 650 to 950°C and in the strain-rate range of 10−3 to 102 s−1 using power dissipation maps which describe the variation of the efficiency of power dissipation, η = 2m /(m + 1) where m is the strain-rate sensitivity of flow stress. The individual domains exhibited by the map have been interpreted and validated by detailed metallographic investigations. Dynamic recrystallization occurs in the temperature range of 730 to 830°C and in the strain-rate range of 10−2 to 2 s−1. The peak efficiency occurs at 800°C and 0.1 s−1 which may be considered as the optimum hot-working parameters in the α-phase field of Zircaloy-2. Superplastic behaviour, characterized by a high efficiency of power dissipation is observed at temperatures greater than 860°C and at strain rates lower than 10−2 s−1. When deformed at 650°C and 10−3 s−1, the primary restoration mechanism is dynamic recovery, while at rates higher than 2s−1, the material exhibits microstructural instabilities in the form of localized shear bands.
Resumo:
In this paper, we have studied electroencephalogram (EEG) activity of schizophrenia patients, in resting eyes closed condition, with detrended fluctuation analysis (DFA). The DFA gives information about scaling and long-range correlations in time series. We computed DFA exponents from 30 scalp locations of 18 male neuroleptic-naIve, recent-onset schizophrenia (NRS) subjects and 15 healthy male control subjects. Our results have shown two scaling regions in all the scalp locations in all the subjects, with different slopes, corresponding to two scaling exponents. No significant differences between the groups were found with first scaling exponent (short-range). However, the second scaling exponent (long-range) were significantly lower in control subjects at all scalp locations (p<0.05, Kruskal-Wallis test). These findings suggest that the long-range scaling behavior of EEG is sensitive to schizophrenia, and this may provide an additional insight into the brain dysfunction in schizophrenia.
Resumo:
We use the Density Matrix Renormalization Group and the Abelian bosonization method to study the effect of density on quantum phases of one-dimensional extended Bose-Hubbard model. We predict the existence of supersolid phase and also other quantum phases for this system. We have analyzed the role of extended range interaction parameters on solitonic phase near half-filling. We discuss the effects of dimerization in nearest neighbor hopping and interaction as well as next nearest neighbor interaction on the plateau phase at half-filling.
Resumo:
The importance of long-range prediction of rainfall pattern for devising and planning agricultural strategies cannot be overemphasized. However, the prediction of rainfall pattern remains a difficult problem and the desired level of accuracy has not been reached. The conventional methods for prediction of rainfall use either dynamical or statistical modelling. In this article we report the results of a new modelling technique using artificial neural networks. Artificial neural networks are especially useful where the dynamical processes and their interrelations for a given phenomenon are not known with sufficient accuracy. Since conventional neural networks were found to be unsuitable for simulating and predicting rainfall patterns, a generalized structure of a neural network was then explored and found to provide consistent prediction (hindcast) of all-India annual mean rainfall with good accuracy. Performance and consistency of this network are evaluated and compared with those of other (conventional) neural networks. It is shown that the generalized network can make consistently good prediction of annual mean rainfall. Immediate application and potential of such a prediction system are discussed.
Resumo:
We report the C-HETSERF experiment for determination of long- and short-range homo- and heteronuclear scalar couplings ((n)J(HH) and (n)J(XH), n >= 1) of organic molecules with a low sensitivity dilute heteronucleus in natural abundance. The method finds significant advantage in measurement of relative signs of long-range heteronuclear total couplings in chiral organic liquid crystal. The advantage of the method is demonstrated for the measurement of residual dipolar couplings (RDCs) in enantiomers oriented in the chiral liquid crystal with a focus to unambiguously assign R/S designation in a 2D spectrum. The alignment tensor calculated from the experimental RDCs and with the computed structures of enantiomers obtained by DFT calculations provides the size of the back-calculated RDCs. Smaller root-mean-square deviations (rmsd) between experimental and calculated RDCs indicate better agreement with the input structure and its correct designation of the stereogenic center.
Resumo:
A simple route for tailoring emissions in the visible wavelength region by chemically coupling quantum dots composed of ZnSe and CdS is reported. coupled quantum dots offer a novel route for tuning electronic transitions via band-offset engineering at the material interface. This novel class of asymmetric. coupled quantum structures may offer a basis for a diverse set of building blocks for optoelectronic devices, ultrahigh density memories, and quantum information processing.
Resumo:
Low-temperature dielectric measurements on FeTiMO(6) (M = Ta,Nb,Sb) rutile-type oxides at frequencies from 0.1 Hz to 10 MHz revealed anomalous dielectric relaxations with frequency dispersion. Unlike the high-temperature relaxor response of these materials, the low-temperature relaxations are polaronic in nature. The relationship between frequency and temperature of dielectric loss peak follows T(-1/4) behavior. The frequency dependence of ac conductivity shows the well-known universal dielectric response, while the dc conductivity follows Mott variable range hopping (VRH) behavior, confirming the polaronic origin of the observed dielectric relaxations. The frequency domain analysis of the dielectric spectra shows evidence for two relaxations, with the high-frequency relaxations following Mott VRH behavior more closely. Significantly, the Cr- and Ga-based analogs, CrTiNbO(6) and GaTiMO(6) (M = Ta,Nb), that were also studied, did not show these anomalies.
Altitude variation of aerosol properties over the Himalayan range inferred from spatial measurements
Resumo:
Altitude variations of the mass concentration of black carbon, number concentration of composite aerosols are examined along with the columnar spectral aerosol optical depths using state of the art instruments and the Angstrom parameters are inferred from the ground based measurements at several altitude levels, en route from Manora Peak, Nainital (similar to 1950 m above mean sea level) to a low altitude station Haldwani (similar to 330 m above mean sea level) at its foothill within an aerial distance of <10,000 m. The measurements were done during the winter months (November-February) of 2005, 2006 and 2007 under fair weather conditions. The results show a rapid decrease in all the measured parameters with increase in altitude, with >60% contribution to the AOD coming from the regions below 1000 m. The Angstrom wavelength exponent remained high in the well mixed region, and decreased above. The normalized AOD gradient was used to estimate aerosol mixing height, which was found to be in the altitude range 1000-1500 m, above which the particle concentrations are slowly varying as a function of altitude. The heating rate at the surface is found to be maximum but decreases sharply with increase in altitude. Analysis of the wavelength dependence of absorption aerosol optical depth (AAOD) showed that the aerosol absorption over the site is generally due to mixed aerosols. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A energy-insensitive explicit guidance design is proposed in this paper by appending newlydeveloped nonlinear model predictive static programming technique with dynamic inversion, which render a closed form solution of the necessary guidance command update. The closed form nature of the proposed optimal guidance scheme suppressed the computational difficulties, and facilitate realtime solution. The guidance law is successfully verified in a solid motor propelled long range flight vehicle, for which developing an effective guidance law is more difficult as compared to a liquid engine propelled vehicle, mainly because of the absence of thrust cutoff facility. The scheme guides the vehicle appropriately so that it completes the mission within a tight error bound assuming that the starting point of the second stage to be a deterministic point beyond the atmosphere. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in the burnout time
Resumo:
Combining the newly developed nonlinear model predictive static programming technique with null range direction concept, a novel explicit energy-insensitive guidance design method is presented in this paper for long range flight vehicles, which leads to a closed form solution of the necessary guidance command update. Owing to the closed form nature, it does not lead to computational difficulties and the proposed optimal guidance algorithm can be implemented online. The guidance law is verified in a solid motor propelled long range flight vehicle, for which coming up with an effective guidance law is more difficult as compared to a liquid engine propelled vehicle (mainly because of the absence of thrust cutoff facility). Assuming the starting point of the second stage to be a deterministic point beyond the atmosphere, the scheme guides the vehicle properly so that it completes the mission within a tight error bound. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in burnout time.
Resumo:
Solid oxide galvanic cells using CaO-ZrO2 and CaO-ZrO2 in combination with YO1.5-ThO2 as electrolyte were used to determine the free energy of formation of hercynite from 750–1600°C. The formation reaction is 2Fe(s,1) + O2(g) + Al2O3(α) = 2FeO.Al2O3(s)for which ΔG° = − 139,790 + 32.83T (±300) cals. (750–1536°C) ΔG° = − 146,390 + 36.48T (±300) cals. (1536–1700°C)These measurements can be used to resolve the discrepancies that exist in published thermochemical data, and provide an accurate oxygen potential standard for calibrating and assessing the performance of oxygen probes under steelmaking conditions.
Resumo:
From electromotive force (emf) measurements using solid oxide galvanic cells incorporating ZrOz-CaO and ThOz-YO~.s electrolytes, the chemical potentials of oxygen over the systems Fe + FeCrzO 4 + Cr20 ~ and Fe + FeV204 + V203 were calculated. The values may be represented by the equations: 2Fe(s, I) + Oz(g) + 2Cr2Oa(s) -- 2FeCr204 (s)Akto2 = - 151,400 + 34.7T (• cal= -633,400 + 145.5T(• J (750 to 1536~ A~tO2 = -158,000 + 38.4T(• cal= -661,000 + 160.5T(*1250) J (1536 to 1700~2Fe (s, I) + O2 (g) + 2V203 (s) -- 2FeV204 (s) A/~Oz = - 138,000 + 29.8T(+300) cal= - 577,500 + 124.7T (• J (750 to 1536~A/IO2 = -144,600 + 33.45T(-300) cal = -605,100 + 140.0T(~-1250) J (1536 to 1700~At the oxygen potentials corresponding to Fe + FeCrzO a + Cr203 equilibria, the electronic contribution to the conductivity of ZrO2-CaO electrolyte was found to affect the measured emf. Application of a small 60 cycle A.C. voltage with an amplitude of 50 mv across the cell terminals reduced the time required to attain equilibrium at temperatures between 750 to 9500C by approximately a factor of two. The second law entropy of iron chromite obtained in this study is in good agreement with that calculated from thermal data. The entropies of formation of these spinel phases from the component oxides can be correlated to cation distribution and crystal field theory.