967 resultados para light-activated heterotrophic growth
Resumo:
The sheathed filamentous bacterium known as strain CT3, isolated by micromanipulation from an activated sludge treatment plant in Italy, is a member of the genus Thiothrix in the gamma-Proteobacteria according to 16S rDNA sequence analysis. The closest phylogenetic neighbours of strain CT3 are strains I and Q(T), which were also isolated from activated sludge and belong to the species Thiothrix fructosivorans. These strains have respectively 99.2 and 99.4 % similarity to CT3 by 16S rDNA sequence comparison. CT3 shows 63-67 % DNA-DNA hybridization with strain I, which is the only currently viable strain of T. fructosivorans. CT3 is the second strain in the genus Thiothrix that has been shown to be capable of growing autotrophically with reduced sulfur compounds as the sole energy source; autotrophy was also confirmed in strain I. The first reported chemolithoautotrophic isolate of this genus was a strain of 'Thiothrix ramosa' that was isolated from a hydrogen sulfide spring and is morphologically distinguishable from all other described strains of Thiothrix, including CT3. CT3 is an aerobic organism that is non-fermentative, not capable of denitrification and able to grow heterotrophically. Autotrophy in the genus Thiothrix should be investigated more fully to better define the taxonomy of this genus.
Resumo:
The marine dinoflagellate genus Dinophysis includes species that are the causative agents of diarrhetic shellfish poisoning (DSP). Recent findings indicate that some Dinophysis species are mixotrophic, i.e. capable of both autotrophic and heterotrophic nutrition. We investigated inorganic (and organic) carbon uptake by several species of Dinophysis in the Light and dark using the 'single-cell C-14 method', and compared uptake rates with those of photosynthetic Ceratium species and heterotrophic dinoflagellates in the genus Protoperidinium. Experiments were conducted with water from the Gullmar Fjord and from the Koster Strait (Swedish west coast). Nutrient-enriched phytoplankton from surface water samples were concentrated (20 to 70 mu m) and incubated at in situ temperature under artificial light conditions with high concentrations of inorganic C-14 (1 mu Ci ml(-1)). Individual cells of each desired species were manually isolated under a microscope and transferred to scintillation vials. C. tripes showed net C-14 uptake only during light periods, whereas both C. lineatum and C. furca showed C-14 uptake in the Light as well as uptake (and sometimes losses) in the dark. Dinophysis species had similar carbon fixation rates in Light compared to Ceratium species. For D. acuminata and D. norvegica, net carbon uptake occurred in both Light and dark periods. D. acuta showed a loss of carbon in the dark in one experiment, but in another, dark C uptake was significantly higher than uptake in Light. When exposed to Light, C. furca, D. norvegica and D. acuta had high specific carbon uptake rates. Growth rates for the different species were calculated from C-14 uptake by the cells during the first hours of incubation in light. D. acuminata and D. norvegica had similar maximum growth rates, 0.59 and 0.63 d(-1) (mu); the maximum growth rate of D. acuta was lower (0.41 d(-1)). The positive dark carbon uptake by Dinophysis may suggest a mixotrophic mode of nutrition. In one experiment, both D. norvegica and D. acuta showed a significantly higher carbon uptake in a dark bottle than in a Light bottle, which would be consistent with uptake of C-14-labeled organic matter by D. norvegica and D. acuta. Demonstration of direct uptake of dissolved and particulate organic matter would provide conclusive evidence of mixotrophy and this will require the development of new protocols for measuring organic matter uptake applicable to Dinophysis in the natural assemblages.
Resumo:
An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.
Resumo:
Theory of developmental origins of adult health and disease proposes that experiences during critical periods of early development may have consequences on health throughout a lifespan. Thesis studies aimed to characterize associations between early growth and some components of the metabolic syndrome cluster. Participants belong to two epidemiological cohorts with data on birth measurements and, for the younger cohort, on serial recordings of weight and height during childhood. They were born as singletons between 1924-33 and 1934-44 in the Helsinki University Central Hospital, and 500 and 2003 of them, respectively, attended clinical studies at the age of 65-75 and 56-70 years, respectively. In the 65-75 year old men and women, the well-known inverse relationship between birth weight and systolic blood pressure (SBP) was confined to people who had established hypertension. Among them a 1-kg increase in birth weight was associated with a 6.4-mmHg (95% CI: 1.0 to 11.9) decrease in SBP. This relationship was further confined to people with the prevailing Pro12Pro polymorphism of the peroxisome proliferator-activated receptor-γ2 (PPARγ2) gene. People with low birth weight were more likely to receive angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers (ACEI/ARB, p=0.03), and, again, this relationship was confined to the carriers of the Pro12Pro (p=0.01 for interaction). These results suggest that the inverse association between birth weight and systolic BP becomes focused in hypertensive people because pathological features of BP regulation, associated with slow fetal growth, become self-perpetuating in adult life. Insulin resistance of the Pro12Pro carriers with low birth weight may interact with the renin-angiotensin system leading to raised BP levels. Habitual physical activity protected men and women who were small at birth, and thus at increased risk for the development of type 2 diabetes, against glucose intolerance more strongly. Among subjects with birth weight ≤3000 g, the odds ratio (OR) for glucose intolerance was 5.2 (95% CI: 2.1 to 13) in those who exercised less than 3 times per week compared to regular exercisers; in those who scored their exercise light compared with moderate exercisers (defined as comparable to brisk walking) the OR was 3.5 (1.5 to 8.2). In the 56-70 year old men a 1 kg increase in birth weight corresponded to a 4.1 kg (95% CI: 3.1 to 5.1) and in women to a 2.9 kg (2.1 to 3.6) increase in adult lean mass. Rapid gain in body mass index (BMI), i.e. crossing from an original BMI percentile to a higher one, before the age of 2 years increased adult lean mass index (LMI, lean mass/height squared) without excess fat accumulation whereas rapid gain in BMI during later childhood, despite the concurrent rise in LMI, resulted in a relatively higher increase in adult body fat mass. These findings illustrate how genes, the environment and their interactions, early growth patterns, and adult lifestyle modify adult health risks which originate from early life.
Resumo:
Cascabela thevetia (L.) Lippold (Apocynaceae) is an invasive woody weed that has formed large infestations at several locations in northern Australia. Understanding the reproductive biology of C. thevetia is vital to its management. This paper reports results of a shade house experiment that determined the effects of light conditions (100% or 30% of natural light) and plant densities (one, two, four or eight plants per plot) on the growth, time to flowering and seed formation, and monthly pod production of two C. thevetia biotypes (peach and yellow). Shaded plants were significantly larger when they reached reproductive maturity than plants grown under natural light. However, plants grown under natural light flowered earlier (268 days compared with 369 days) and produced 488 more pods per pot (a 5-fold increase) over 3 years. The yellow biotype was slightly taller at reproductive maturity but significantly taller and with significantly greater aboveground biomass at the end of the study. Both biotypes flowered at a similar time under natural light and low plant densities but the yellow biotype was quicker to seed (478 versus 498 days), produced significantly more pods (364 versus 203 pods) and more shoot growth (577 g versus 550 g) than the peach biotype over 3 years. Higher densities of C. thevetia tended to significantly reduce the shoot and root growth by 981 g and 714 g per plant across all light conditions and biotypes over 3 years and increase the time taken to flower by 140 days and produce seeds by 184 days. For land managers trying to prevent establishment of C. thevetia or to control seedling regrowth once initial infestations have been treated, this study indicates that young plants have the potential to flower and produce seeds within 268 and 353 days, respectively. However, with plant growth and reproduction most likely to be slower under field conditions, annual surveillance and control activities should be sufficient to find and treat plants before they produce seeds and replenish soil seed banks. The most at-risk part of the landscape may be open areas that receive maximum sunlight, particularly within riparian habitats where plants would consistently have more favourable soil moisture conditions.
Resumo:
PURPOSE The purpose of this study was to examine the relationship between objectively measured ambient light exposure and longitudinal changes in axial eye growth in childhood. METHODS A total of 101 children (41 myopes and 60 nonmyopes), 10 to 15 years of age participated in this prospective longitudinal observational study. Axial eye growth was determined from measurements of ocular optical biometry collected at four study visits over an 18-month period. Each child’s mean daily light exposure was derived from two periods (each 14 days long) of objective light exposure measurements from a wrist-worn light sensor. RESULTS Over the 18-month study period, a modest but statistically significant association between greater average daily light exposure and slower axial eye growth was observed (P ¼ 0.047). Other significant predictors of axial eye growth in this population included children’s refractive error group (P < 0.001), sex (P < 0.01), and age (P < 0.001). Categorized according to their objectively measured average daily light exposure and adjusting for potential confounders (age, sex, baseline axial length, parental myopia, nearwork, and physical activity), children experiencing low average daily light exposure (mean daily light exposure: 459 6 117 lux, annual eye growth: 0.13 mm/y) exhibited significantly greater eye growth than children experiencing moderate (842 6 109 lux, 0.060 mm/y), and high (1455 6 317 lux, 0.065 mm/y) average daily light exposure levels (P ¼ 0.01). CONCLUSIONS In this population of children, greater daily light exposure was associated with less axial eye growth over an 18-month period. These findings support the role of light exposure in the documented association between time spent outdoors and childhood myopia.
Resumo:
• Although there is evidence that outdoor activity is an important factor involved in the development of childhood refractive error,1,2 the mechanism underlying the association between more outdoor activity and less myopia in childhood is not clear. • In this prospective longitudinal study, the relationship between objectively measured ambient light exposure and eye growth in childhood was examined.
Resumo:
A one-step synthesis of Ga2O3 nanorods by heating molten gallium in ambient air at high temperatures is presented. The high-temperature synthesis creates oxygen vacancies and incorporates nitrogen from the environment. The oxygen vacancy in Ga2O3 is responsible for the emission in the blue-green region, while nitrogen in Ga2O3 is responsible for red emission.
Resumo:
Two intercalatable Co-II-complexes of anthryl or anthraquinone attached bispicolylamine derivatives cleave plasmid pTZ19R DNA spontaneously upon exposure to visible light under ambient conditions.
Resumo:
Glioblastoma is the most common and malignant form of primary astrocytoma. Upon investigation of the insulin-like growth factor (IGF) pathway, we found the IGF2BP3/IMP3 transcript and protein to be up-regulated in GBMs but not in lower grade astrocytomas (p<0.0001). IMP3 is an RNA binding protein known to bind to the 5'-untranslated region of IGF-2 mRNA, thereby activating its translation. Overexpression-and knockdown-based studies establish a role for IMP3 in promoting proliferation, anchorage-independent growth, invasion, and chemoresistance. IMP3 overexpressing B16F10 cells also showed increased tumor growth, angiogenesis, and metastasis, resulting in poor survival in a mouse model. Additionally, the infiltrating front, perivascular, and subpial regions in a majority of the GBMs stained positive for IMP3. Furthermore, two different murine glioma models were used to substantiate the above findings. In agreement with the translation activation functions of IMP3, we also found increased IGF-2 protein in the GBM tumor samples without a corresponding increase in its transcript levels. Also, in vitro IMP3 overexpression/knockdown modulated the IGF-2 protein levels without altering its transcript levels. Additionally, IGF-2 neutralization and supplementation studies established that the proproliferative effects of IMP3 were indeed mediated through IGF-2. Concordantly, PI3K and MAPK, the downstream effectors of IGF-2, are activated by IMP3 and are found to be essential for IMP3-induced cell proliferation. Thus, we have identified IMP3 as a GBM-specific proproliferative and proinvasive marker acting through IGF-2 resulting in the activation of oncogenic PI3K and MAPK pathways.
Resumo:
For the first time, high quality tin oxide (SnO2) nanowires have been synthesized at a low substrate temperature of 450 degrees C via vapor-liquid-solid mechanism using an electron beam evaporation technique. The grown nanowires have shown length of 2-4 mu m and diameter of 20-60 nm. High resolution transmission electron microscope studies on the grown nanowires have shown the single crystalline nature of the SnO2 nanowires. We investigated the effect of growth temperature and oxygen partial pressure on SnO2 nanowires growth. Variation of substrate temperature at a constant oxygen partial pressure of 4 x 10(-4) mbar suggested that a temperature equal to or greater than 450 degrees C was the best condition for phase pure SnO2 nanowires growth. The SnO2 nanowires grown on a SiO2 substrate were subjected to UV photo detection. The responsivity and quantum efficiency of SnO2 NWs photo detector (at 10V applied bias) was 12 A/W and 45, respectively, for 12 mu W/cm(2) UV lamp (330 nm) intensity on the photo detector.
Resumo:
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-alpha, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKC delta-MAPK pathway to suppress beta-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.
Resumo:
Preliminary results show microradiography and scanning electron microscopy (SEM) to be more accurate methods of accessing growth layer groups (GLGs) in the teeth of Tursiops truncatus than transmitted light microscopy. Microradiography shows the rhythmic deposition of mineral as alternating radiopaque and radiolucent layers. It improves the resolution of GLGs near the pulp cavity in older individuals, better than either SEM or light microscopy. SEM of etched sections show GLGs as ridges and grooves which are easily counted from the micrograph. SEM also shows GLGs to be composed of fine incremental layers of uniform size and number which may allow for more precise age determination. Accessory layers are usually hypomineralized layers within the hypermineralized layer of the GLG and are more readily distinguishable as such in SEM of etched sections and microradiographs than in thin sections viewed under transmitted light. The neonatal line is hypomineralized, appearing translucent under transmitted light, radiolucent in a microradiograph, and as a ridge in SEM. (PDF contains 6 pages.)
Resumo:
The effects of light duration on the growth and performance of Clarias gariepinus fingerlings were investigated using artificial methods to simulate continuous day length and absolute darkness. The normal day length (12-H Light and 12-H Darkness) served as the control. Among some of the factors affected by the varying photoperiods there were body coloration, feeding efficiency, survival rate and Specific Growth Rate (SGR). There was notably no significant difference between the SGR of the 0-photoperiod culture and the control (P>0.05) but there was significant difference between the 0-photoperiod and the 24-H photoperiod experiment (P<0.05). The haematological profile analysed showed various degrees of changes in the blood parameters of fish cultured under different photoperiods. These changes however, did not show significant differences when subjected to statistical analysis