963 resultados para laser glass


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a new pulse cleaning technique to enhance the contrast ratio of intense ultra-short laser pulses. A pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate is developed, and a contrast ratio improvement of two orders of magnitude for the milli-joule level femtosecond input pulses is demonstrated, the total transmission efficiency of the pulse cleaner is 16.7%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the fabrication of a novel surface-enhanced Raman scattering (SERS) substrate with a controllable enhancement factor (EF) using femtosecond laser direct writing on Ag+-doped phosphate glass followed by chemical plating at similar to 40 degrees C. Silver seeds were first photoreduced using a femtosecond laser in a laser-irradiated area and then transformed into silver nanoparticles of suitable size for SERS application in the subsequent chemical plating. Rhodamine 6G was used as a probing molecule to investigate the enhancement effect of a Raman signal on the substrate. Nearly homogenous enhancement of the Raman signal over the Substrate was achieved, and the EF of the substrate was controlled to some extent by adjusting fabrication parameters. Moreover, the ability of forming a SERS platform in an embedded microfluidic chamber would be of great use for establishing a compact lab-on-a-chip device based on Raman analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that a Raman sensor integrated with a micro-heater, a microfluidic chamber, and a surface-enhanced Raman scattering (SERS) substrate can be fabricated in a glass chip by femtosecond laser micromachining. The micro-heater and the SERS substrate are fabricated by selective metallization on the glass surface using a femtosecond laser oscillator, whereas the microfluidic chamber embedded in the glass sample is fabricated by femtosecond laser ablation using a femtosecond laser amplifier. We believed that this new strategy for fabricating multifunctional integrated microchips has great potential application for lab-on-a-chips. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent Ni2+-doped beta-Ga2O3 glass-ceramics were synthesized. The nanocrystal phase in the glass-ceramics was identified to be beta-Ga2O3 and its size was about 3.6 nm. It was confirmed from the absorption spectra that the ligand environment of Ni2+ ions changed from the trigonal bi-pyramid fivefold sites in the as-cast glass to the octahedral sites in the glass-ceramics. The broadband infrared emission centering at 1270 nm with full width at half maximum (FWHM) of more than 250 nm was observed. The fluorescence lifetime was about 1.1 mu s at room temperature. The observed infrared emission could be attributed to the T-3 (2g) (F-3) -> (3)A (2g) (F-3) transition of octahedral Ni2+ ions. It is suggested that the Ni2+-doped transparent beta-Ga2O3 glass-ceramics with broad bandwidth and long lifetime have a potential as a broadband amplification medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence. After heat-treatment, ZnAl2O4 crystallite was precipitated in the glasses, and its average size increased with increasing heat-treatment temperature. No infrared emission was detected in the as-prepared glass samples, while broadband infrared luminescence centered at 1310 nm with full width at half maximum (FWHM) of about 300 nm was observed from the glass-ceramics. The peak position of the infrared luminescence showed a blue-shift with increasing heat-treatment temperature, but a red-shift with an increase in NiO concentration. The mechanisms of the observed phenomena were discussed. These glass-ceramics are promising as materials for super broadband optical amplifier and tunable laser. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report selective metallization on surfaces of insulators ( glass slides and lithium niobate crystal) based on femtosecond laser modification combined with electroless plating. The process is mainly composed of four steps: (1) formation of silver nitrate thin films on the surfaces of glass or crystal substrates; (2) generation of silver particles in the irradiated area by femtosecond laser direct writing; (3) removal of unirradiated silver nitrate films; and (4) selective electroless plating in the modified area. We discuss the mechanism of selective metallization on the insulators. Moreover, we investigate the electrical and adhesive properties of the copper microstructures patterned on the insulator surfaces, showing great potential of integrating electrical functions into lab-on-a-chip devices. (C) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-organized microgratings were induced in the bulk SrTiO3 crystal by readily scanning the laser focus in the direction perpendicular to the laser propagation axis. The groove orientations of those gratings could be controlled by changing the irradiation pulse number per unit scanning length, which could be implemented either through adjusting the scanning velocity at a fixed pulse repetition rate or through varying the pulse repetition rate at a fixed scanning velocity. This high-speed method for fabrication of microgratings will have many potential applications in the integration of micro-optical elements. The possible formation mechanism of the self-organized microgratings is also discussed. (C) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of the femtosecond optical heterodyne detection of optical Kerr effect at 805 am with the 80 fs ultrafast pulses in amorphous Ge10As40S30Se20 film is reported in this Letter. The film shows an optical nonlinear response of 200 fs under ultrafast 80 fs-pulse excitation, and the values of real and imaginary parts of nonlinear susceptibility chi((3)) were 9.0 x 10(-12) esu and -4.0 x 10(-12) esu respectively. The large third-order nonlinearity and ultrafast response are attributed to the ultrafast distortion of the electron orbits surrounding the average positions of the nucleus of Ge, As, S and Se atoms. This Ge10As40S30Se20 chalcogenide glass would be expected as a promising material for optical switching technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fe:BiOx films are fabricated on K9 glass substrates by rf-magnetron sputtering of a BiFeO target under argon atmosphere with increasing sputtering power from 80 to 200 W at room temperature. It is found that the thin films grown at the sputtering power of 160W can be formed at an appropriate deposition rate and have an improved surface morphology. The XPS result reveals that the films investigated are comprised of Bi, Fe and O elements. A typical XRD pattern shows that no phase transition occurs in the films up to 400 degrees C. The results of the blue laser recording test demonstrate that the Fe:BiOx films have good writing sensitivity for blue laser beam (406.7 nm) and good stability after reading 10000 times. The recording marks of 200nm or less are obtained. These results indicate that the introduction of Fe into BiOx films can reduce the mark size and improve the stability of the films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sheet resistance of laser-irradiated Ge2Sb2Te5 thin films prepared by magnetron sputtering was measured by the four-point probe method. With increasing laser power the sheet resistance undergoes an abrupt drop from 10(7) to 10(3) Omega/square at about 580 mW. The abrupt drop in resistance is due to the structural change from amorphous to crystalline state as revealed by X-ray diffraction (XRD) study of the samples around the abrupt change point. Crystallized dots were also formed in the amorphous Ge2Sb2Te5 films by focused short pulse laser-irradiated, the resistivities at the crystallized dots and the non-crystallized area are 3.375 x 10(-3) and 2.725 Omega m, sheet resistance is 3.37 x 10(4) and 2.725 x 10(7) Omega/square respectively, deduced from the I-V Curves that is obtained by conductive atomic force microscope (C-AFM). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nd-doped phosphate glass belt lasers pumped by laser diodes are demonstrated. The Nd-glass belt with a large cross-section and a small Fresnel number is air-cooled to provide around 18-W continuous wave (CW) output power with a beam quality factor of My2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dy3+ doped oxyfluoride silicate glass was prepared and its optical absorption, 1.3 mu m emission, and upconversion luminescence properties were studied. Furthermore, the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] intensity parameters, oscillator strengths, spontaneous transition probability, fluorescence branching ratio and radiative lifetime were calculated by Judd-Ofelt theory, while stimulated emission cross section of H-6(9/2)+F-6(11/2)-> H-6(15/2) transition was calculated by McCumber theory [Phys. Rev. A. 134, 299 (1964)]. According to the obtained Judd-Ofelt intensity parameters Omega(2)=2.69x10(-20) cm(2), Omega(4)=1.64x10(-20) cm(2), and Omega(6)=1.64x10(-20) cm(2), the radiative lifetime was calculated to be 810 mu s for 1.3 mu m emission, whose full width at half maximum and sigma(e) were 115 nm and 2.21x10(-20)cm(2), respectively. In addition, near infrared to visible upconversion luminescence was observed and evaluated. The results suggest that Dy3+ doped oxyfluoride silicate glass can be used as potential host material for developing broadband optical amplifiers and laser applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the fabrication and characterization of low-loss planar and stripe waveguides in a Nd3+-doped glass by 6 MeV oxygen-ion implantation at a dose of 1x10(15) ions/cm(2). The dark mode spectroscopy of the planar waveguide was measured using a prism coupling arrangement. The refractive index profile of the planar waveguide was reconstructed from a code based on the reflectivity calculation method. The results indicate that a refractive index enhanced region as well as an optical barrier have been created after the ion beam processing. The near-field mode profiles of the stripe waveguide were obtained by an end-fire coupling arrangement, by which three quasitransverse electric modes were observed. After annealing, the propagation losses of the planar and stripe waveguides were reduced to be similar to 0.5 and similar to 1.8 dB/cm, respectively. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorophosphate glass with 4 mol.% ErF3 content was prepared. The different scanning calorimetry was conducted. Raman spectrum, infrared transmission spectrum, absorption spectrum were measured. Fluorescence spectrum and lifetime of emission around 1.53 mu m were measured under 970 nm laser diode excitation. The metaphosphate content in the composition is limited, but the maximum phonon energy of glass amounts to 1290 cm- 1, and is comparatively high. The full width at half maximum is about 56 nm, and is wider than for most of the materials investigated. The measured lifetime of I-4(13/2) -> I-4(15/2) transition, contributed by the high phonon energy, inefficient interaction of Er3+ ions, and low water content, amounts to no less than 7.36 ms though the Er3+ concentration is high. This work might provide useful information for the development of compact optical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the broadband optical amplification in bismuth-doped strontium germanate glass with 808 nm and 980 nm laser diodes (LDs) as excitation sources. The net optical gain has been obtained within the wavelength region of 1272 to 1348 nm with 808 nm laser diode under 0.97 W power. The maximum gain and gain coefficients are 1.23 and 1.03 cm(-1) at 1315 nm, respectively. The signal increment at 1300 nm is 2.8 times with 980 nm LD, under 3 W power. The differential thermal analysis measurement reveals the good thermal stability of the studied glass. This glass could be suggested as a promising gain medium for broadband optical amplifiers.