884 resultados para kernel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of this work deals with the inverse problem solution in the X-ray spectroscopy field. An original strategy to solve the inverse problem by using the maximum entropy principle is illustrated. It is built the code UMESTRAT, to apply the described strategy in a semiautomatic way. The application of UMESTRAT is shown with a computational example. The second part of this work deals with the improvement of the X-ray Boltzmann model, by studying two radiative interactions neglected in the current photon models. Firstly it is studied the characteristic line emission due to Compton ionization. It is developed a strategy that allows the evaluation of this contribution for the shells K, L and M of all elements with Z from 11 to 92. It is evaluated the single shell Compton/photoelectric ratio as a function of the primary photon energy. It is derived the energy values at which the Compton interaction becomes the prevailing process to produce ionization for the considered shells. Finally it is introduced a new kernel for the XRF from Compton ionization. In a second place it is characterized the bremsstrahlung radiative contribution due the secondary electrons. The bremsstrahlung radiation is characterized in terms of space, angle and energy, for all elements whit Z=1-92 in the energy range 1–150 keV by using the Monte Carlo code PENELOPE. It is demonstrated that bremsstrahlung radiative contribution can be well approximated with an isotropic point photon source. It is created a data library comprising the energetic distributions of bremsstrahlung. It is developed a new bremsstrahlung kernel which allows the introduction of this contribution in the modified Boltzmann equation. An example of application to the simulation of a synchrotron experiment is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il lavoro descrive la progettazione, l'implementazione e il test sperimentale di un meccanismo, integrato nel kernel Linux 4.0, dedicato al riconoscimento delle perdite dei frame Wi-Fi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrent event data are largely characterized by the rate function but smoothing techniques for estimating the rate function have never been rigorously developed or studied in statistical literature. This paper considers the moment and least squares methods for estimating the rate function from recurrent event data. With an independent censoring assumption on the recurrent event process, we study statistical properties of the proposed estimators and propose bootstrap procedures for the bandwidth selection and for the approximation of confidence intervals in the estimation of the occurrence rate function. It is identified that the moment method without resmoothing via a smaller bandwidth will produce curve with nicks occurring at the censoring times, whereas there is no such problem with the least squares method. Furthermore, the asymptotic variance of the least squares estimator is shown to be smaller under regularity conditions. However, in the implementation of the bootstrap procedures, the moment method is computationally more efficient than the least squares method because the former approach uses condensed bootstrap data. The performance of the proposed procedures is studied through Monte Carlo simulations and an epidemiological example on intravenous drug users.