993 resultados para interactions médicamenteuses
Resumo:
Dalton Trans., 2009, 7985–7994
Resumo:
Dissertação para obtenção do Grau de Doutor em Estatística e Gestão do Risco, especialidade em Estatística
Resumo:
Inorganic Chemistry 50(21):10600-7
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioquímica, Especialidade Bioquímica Estrutural
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Química Sustentável, especialidade de Química-Física Inorgânica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
Visceral leishmaniasis (VL) or kala-azar, a disseminated infection of the lymphoreticular system of the body, is marked by severe defect in immune system of the host. Successful cure of VL depends on the immune status of the host in combination with the effects of the antileishmanial drugs. The rationale approach towards eradication of this disease would be to potentiate the immune functioning of the host in addition to parasite killing. This review deals with different aspects of adaptive and innate immune responses and explores their role in protection or pathogenesis of VL. IL-10 has emerged as the principal cytokine responsible for disease pathogenesis, although evidences regarding its source during active VL remain inconclusive. On the other hand, IFNγ, under the influence of IL-12, is mostly correlated with healing of the disease. Chemokines are important in mounting cell-mediated immune response as they can prevent parasite invasion in association with cytokines. Different types of T cells like CD4, CD8 and NK T cells also contribute to the immunology of this disease. In spite of conflicting reports, the role of regulatory T cells in VL pathogenesis is important. Recently discovered Th17 subset and its different members have been reported to perform diverse functions in the course of VL and leishmaniasis as a whole. Innate immune responses, depending on the cell types, are essential in early parasite detection and subsequent development of an efficient NK cell response. Immunotherapy targeting IL-10 could be looked upon as an interesting option for the treatment of VL.
Resumo:
This work project aims to demonstrate how to design and develop an innovative concept of video streaming app. The project combines technology push and market pull theories into developing a product that is more suitable for the customer needs, with the particularity that there is no other way of seeing any place in the world, live and ondemand. An analysis on the bigger influencers in terms of design-thinking and new product development, as Tim Brown or Paul Trott, lead to a better understanding on how There App should evolve, keeping in mind the customer desires and technical features.
Resumo:
This research was conducted to understand how Facebook users interact and the underlying reasons for doing so with a focus on one-to-mass communication interactions. Different methods and sources were used to generate accurate and valid insights. It was discovered that liking, groups, commenting, events and sharing are essential interactions, whereby liking, commenting and sharing were investigated in more detail. This investigations proves that emotions do trigger these three interactions; The most influencing emotions are Surprise/Wonder, Deep Respect/ Impressiveness and Fun/Joy. Moreover a variety of specific factors that trigger each of the interactions are revealed.
Synergistic interactions in mixed-species biofilms of pathogenic bacteria from the respiratory tract
Resumo:
IntroductionMixed-species biofilms are involved in a wide variety of infections. We studied the synergistic interactions during dual-species biofilm formation among isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia.MethodsIsolates were cultured as single-species and all possible combinations of dual-species biofilms.ResultsThe 61 A. baumannii biofilms increased by 26-fold when cultured with S. maltophilia isolates; 62 A. baumannii biofilms increased by 20-fold when cultured with S. maltophilia isolates; and 31 P. aeruginosa biofilms increased by 102-fold when cultured with S. maltophilia 106.ConclusionsSynergy was observed between two isolates, including those that inherently lacked biofilm formation ability.
Resumo:
Staphylococcus aureus (S. aureus) is a major human pathogen that has acquired resistance to practically all classes of β-lactam antibiotics, being responsible of Multidrug resistant S. aureus (MRSA) associated infections both in healthcare (HA-MRSA) and community settings (CA-MRSA). The emergence of laboratory strains with high-resistance (VRSA) to the last resort antibiotic, vancomycin, is a warning of what is to come in clinical strains. Penicillin binding proteins (PBPs) target β-lactams and are responsible for catalyzing the last steps of synthesis of the main component of cell wall, peptidoglycan. As in Escherichia coli, it is suggested that S. aureus uses a multi-protein complex that carries out cell wall synthesis. In the presence of β-lactams, PBP2A and PBP2 perform a joint action to build the cell wall and allow cell survival. Likewise, PBP2 cooperates with PBP4 in cell wall cross-linking. However, an actual interaction between PBP2 and PBP4 and the location of such interaction has not yet been determined. Therefore, investigation of the existence of a PBP2-PBP4 interaction and its location(s) in vivo is of great interest, as it should provide new insights into the function of the cell wall synthesis machinery in S. aureus. The aim of this work was to develop Split-GFPP7 system to determine interactions between PBP2 and PBP4. GFPP7 was split in a strategic site and fused to proteins of interest. When each GFPP7 fragment, fused to proteins, was expressed alone in staphylococcal cells, no fluorescence was detectable. When GFPP7 fragments fused to different peptidoglycan synthesis (PBP2 and PBP4) or cell division (FtsZ and EzrA) proteins were co-expressed together, fluorescent fusions were localized to the septum. However, further analysis revealed that this positive result is mediated by GFPP7 self-association. We then interpret the results in light of such event and provide insights into ways of improving this system.
Resumo:
Polyurethane thermoplastic elastomer (TPU) nanocomposites were prepared by the incorporation of 1 wt% of high-structured carbon black (HSCB), carbon nanofibers (CNF), nanosilica (NS) and nanoclays (NC), following a proper high-shear blending procedure. The TPU nanofilled mechanical properties and morphology was assessed. The nanofillers interact mainly with the TPU hard segments (HS) domains, determining their glass transition temperature, and increasing their melting temperature and enthalpy. A significant improvement upon the modulus, sustained stress levels and deformation capabilities is evidenced. The relationships between the morphology and the nanofilled TPU properties are established, evidencing the role of HS domains on the mechanical response, regardless the nanofiller type.