893 resultados para intellectual and developmental disability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the structural genes for the anthrax toxin proteins is coordinately controlled by host-related signals such as elevated CO2 , and the trans-acting positive regulator, AtxA. No specific binding of AtxA to the toxin gene promoters has been demonstrated and no sequence-based similarities are apparent in the promoter regions of toxin genes. We hypothesized that the toxin genes possess common structural features that are required for positive regulation. To test this hypothesis, I performed an extensive characterization of the toxin gene promoters. I determined the minimal sequences required for atxA-mediated toxin gene expression and compared these sequences for structural similarities. In silico modeling and in vitro experiments indicated significant curvature within these regions. Random mutagenesis revealed that point mutations associated with reduced transcriptional activity, mostly mapped to areas of high curvature. This work enabled the identification of two potential cis-acting elements implicated in AtxA-mediated regulation of the toxin genes. In addition to the growth condition requirements and AtxA, toxin gene expression is under growth phase regulation. The transition state regulator AbrB represses atxA expression to influence toxin synthesis. Here I report that toxin gene expression also requires sigH, a gene encoding the RNA polymerase sigma factor associated with development in B. subtilis. In the well-studied B. subtilis system, σH is part of a feedback control pathway that involves AbrB and the major response regulator of sporulation initiation, Spo0A. My data indicate that in B. anthracis, regulatory relationships exist between these developmental regulators and atxA . Interestingly, during growth in toxin-inducing conditions, sigH and abrB expression deviates from that described for B. subtilis, affecting expression of the atxA gene. These findings, combined with previous observations, suggest that the steady state level of atxA expression is critical for optimal toxin gene transcription. I propose a model whereby, under toxin-inducing conditions, control of toxin gene expression is fine-tuned by the independent effects of the developmental regulators on the expression of atxA . The growth condition-dependent changes in expression of these regulators may be crucial for the correct timing and uninterrupted expression of the toxin genes during infection. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Slow Learners" is a term used to describe children with an IQ range of 70-89 on a standardized individual intelligence test (i.e. with a standard deviation of either 15 or 16). They have above retarded, but below average intelligence and potential to learn. If the factors associated with the etiology of slow learning in children can be identified, it may be possible to hypothesize causal relationships which can be tested by intervention studies specifically designed to prevent slow learning. If effective, these may ultimately reduce the incidence of school dropouts and their cost to society. To date, there is little information about variables which may be etiologically significant. In an attempt to identify such etiologic factors this study examines the sociodemographic characteristics, prenatal history (hypertension, smoking, infections, medication, vaginal bleeding, etc.), natal history (length of delivery, Apgar score, birth trauma, resuscitation, etc.), neonatal history (infections, seizures, head trauma, etc.), developmental history (health problems, developmental milestones and growth during infancy and early childhood), and family history (educational level of the parents, occupation, history of similar condition in the family, etc.) of a series of children defined as slow learners. The study is limited to children from middle to high socioeconomic families in order to exclude the possible confounding variable of low socioeconomic status, and because a descriptive study of this group has not been previously reported. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined impacts of future scenarios of ocean acidification and global warming on the larvae of a cold-eurythermal spider crab, Hyas araneus L., were investigated in one of its southernmost populations (living around Helgoland, southern North Sea, 54°N) and one of the northernmost populations (Svalbard, North Atlantic, 79°N). Larvae were exposed at temperatures of 3, 9 and 15°C to present day normocapnia (380 ppm CO2) and to CO2 conditions expected for the near or medium-term future (710 ppm by 2100 and 3000 ppm CO2 by 2300 and beyond). Larval development time and biochemical composition were studied in the larval stages Zoea I, II, and Megalopa. Permanent differences in instar duration between both populations were detected in all stages, likely as a result of evolutionary temperature adaptation. With the exception of Zoea II at 3°C and under all CO2 conditions, development in all instars from Svalbard was delayed compared to those from Helgoland, under all conditions. Most prominently, development was much longer and fewer specimens morphosed to the first crab instar in the Megalopa from Svalbard than from Helgoland. Enhanced CO2 levels (710 and particularly 3000 ppm), caused extended duration of larval development and reduced larval growth (measured as dry mass) and fitness (decreasing C/N ratio, a proxy of the lipid content). Such effects were strongest in the zoeal stages in Svalbard larvae, and during the Megalopa instar in Helgoland larvae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although extensively studied biochemically, members of the Protein 4.1 superfamily have not been as well characterized genetically. Studies of coracle, a Drosophila Protein 4.1 homologue, provide an opportunity to examine the genetic functions of this gene family. coracle was originally identified as a dominant suppressor of EgfrElp, a hypermorphic form of the Drosophila Epidermal growth factor receptor gene. In this article, we present a phenotypic analysis of coracle, one of the first for a member of the Protein 4.1 superfamily. Screens for new coracle alleles confirm the null coracle phenotype of embryonic lethality and failure in dorsal closure, and they identify additional defects in the embryonic epidermis and salivary glands. Hypomorphic coracle alleles reveal functions in many imaginal tissues. Analysis of coracle mutant cells indicates that Coracle is a necessary structural component of the septate junction required for the maintenance of the transepithelial barrier but is not necessary for apical–basal polarity, epithelial integrity, or cytoskeletal integrity. In addition, coracle phenotypes suggest a specific role in cell signaling events. Finally, complementation analysis provides information regarding the functional organization of Coracle and possibly other Protein 4.1 superfamily members. These studies provide insights into a range of in vivo functions for coracle in developing embryos and adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomerase activity is developmentally regulated in mammals. Here we examine telomerase activity in plants, whose development differs in fundamental ways from that of animals. Using a modified version of the telomere repeat amplification protocol (TRAP) assay, we detected an activity in extracts from carrots, cauliflower, soybean, Arabidopsis, and rice with all the characteristics expected for a telomerase synthesizing the plant telomere repeat sequence TTTAGGG. The activity was dependent on RNA and protein components, required dGTP, dATP, and dTTP, but not dCTP, and generated products with a seven nucleotide periodicity. Telomerase activity was abundant in cauliflower meristematic tissue and undifferentiated cells from Arabidopsis, soybean, and carrot suspension cultures, but was low or not detectable in a sampling of differentiated tissues from mature plants. Telomerase from cauliflower meristematic tissues exhibited relaxed DNA sequence requirements, which might reflect the capacity to form telomeres on broken chromosomes in vivo. The dramatic differences in telomerase expression and their correlation with cellular proliferation capacity mirror changes in human telomerase levels during differentiation and immortalization. Hence, telomerase activation appears to be a conserved mechanism involved in conferring long-term proliferation capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Zebrafish Information Network, ZFIN, is a WWW community resource of zebrafish genetic, genomic and developmental research information (http://zfin.org). ZFIN provides an anatomical atlas and dictionary, developmental staging criteria, research methods, pathology information and a link to the ZFIN relational database (http://zfin.org/ZFIN/). The database, built on a relational, object-oriented model, provides integrated information about mutants, genes, genetic markers, mapping panels, publications and contact information for the zebrafish research community. The database is populated with curated published data, user submitted data and large dataset uploads. A broad range of data types including text, images, graphical representations and genetic maps supports the data. ZFIN incorporates links to other genomic resources that provide sequence and ortholog data. Zebrafish nomenclature guidelines and an automated registration mechanism for new names are provided. Extensive usability testing has resulted in an easy to learn and use forms interface with complex searching capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How do the actions of individual genes contribute to the complex morphologies of animals and plants? How widespread are these genes taxonomically? How many genes are involved in the morphological differences observed between species, and can we identify them? To what extent can empirical data and theory be reconciled? We provide an overview of some recent attempts to answer these questions, answers that have taken us to the threshold of understanding the mechanistic basis and evolutionary factors that underlie morphological innovation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The essential eukaryotic pre-mRNA splicing factor U2AF (U2 small nuclear ribonucleoprotein auxiliary factor) is required to specify the 3' splice at an early step in spliceosome assembly. U2AF binds site-specifically to the intron polypyrimidine tract and recruits U2 small nuclear ribonucleoprotein to the branch site. Human U2AF (hU2AF) is a heterodimer composed of a large (hU2AF65) and small (hU2AF35) subunit. Although these proteins associate in a tight complex, the biochemical requirement for U2AF activity can be satisfied solely by the large subunit. The requirement for the small subunit in splicing has remained enigmatic. No biochemical activity has been found for hU2AF35 and it has been implicated in splicing only indirectly by its interaction with known splicing factors. In the absence of a biochemical assay, we have taken a genetic approach to investigate the function of the small subunit in the fruit fly Drosophila melanogaster. A cDNA clone encoding the small subunit of Drosophila U2AF (dU2AF38) has been isolated and sequenced. The dU2AF38 protein is highly homologous to hU2AF35 containing a conserved central arginine- and serine-rich (RS) domain. A recessive P-element insertion mutation affecting dU2AF38 causes a reduction in viability and fertility and morphological bristle defects. Consistent with a general role in splicing, a null allele of dU2AF38 is fully penetrant recessive lethal, like null alleles of the Drosophila U2AF large subunit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many plants, osmotic stress induces a rapid accumulation of proline through de novo synthesis from glutamate. This response is thought to play a pivotal role in osmotic stress tolerance [Kishor, P. B. K., Hong, Z., Miao, G.-H., Hu, C.-A. A. and Verma, D. P. S. (1995) Plant Physiol. 108, 1387-1394]. During recovery from osmotic stress, accumulated proline is rapidly oxidized to glutamate and the first step of this process is catalyzed by proline oxidase. We have isolated a full-length cDNA from Arabidopsis thaliana, At-POX, which maps to a single locus on chromosome 3 and that encodes a predicted polypeptide of 499 amino acids showing significant similarity with proline oxidase sequences from Drosophila and Saccharomyces cerevisiae (55.5% and 45.1%, respectively). The predicted location of the encoded polypeptide is the inner mitochondrial membrane. RNA gel blot analysis revealed that At-POX mRNA levels declined rapidly upon osmotic stress and this decline preceded proline accumulation. On the other hand, At-POX mRNA levels rapidly increased during recovery. Free proline, exogenously added to plants, was found to be an effective inducer of At-POX expression; indeed, At-POX was highly expressed in flowers and mature seeds where the proline level is higher relative to other organs of Arabidopsis. Our results indicate that stress- and developmentally derived signals interact to determine proline homeostasis in Arabidopsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes a paternal effect on sperm aster size and microtubule organization during bovine fertilization. Immunocytochemistry using tubulin antibodies quantitated with confocal microscopy was used to measure the diameter of the sperm aster and assign a score (0-3) based on the degree of radial organization (0, least organized; 3, most organized). Three bulls (A-C) were chosen based on varying fertility (A, lowest fertility; C, highest fertility) as assessed by nonreturn to estrus after artificial insemination and in vitro embryonic development to the blastocyst stage. The results indicate a statistically significant bull-dependent difference in diameter of the sperm aster and in the organization of the sperm astral microtubules. Insemination from bull A resulted in an average sperm aster diameter of 101.4 microm (76.3% of oocyte diameter). This significantly differs (P < or = 0.0001) from the average sperm aster diameters produced after inseminations from bull B (78.2 microm; 60.8%) or bull C (77.9 microm; 57.8%), which themselves displayed no significant differences. The degree of radial organization of the sperm aster was also bull-dependent. Sperm asters organized by bull A-derived sperm had an average quality score of 1.8, which was higher than that of bull B (1.4; P < or = 0.0005) or bull C (1.2; P < or = 0.0001). Results with bulls B and C were also significantly different (P < or = 0.025). These results indicate that the paternally derived portion of the centrosome varies among males and that this variation affects male fertility, the outcome of early development, and, therefore, reproductive success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The drive on respiration mediated by the peripheral arterial chemoreceptors was assessed by the hyperoxic test in 3-day-old rat pups. They accounted for 22.5 +/- 8.8% during control conditions, but only for 6.9 +/- 10.0% after nicotine exposure, an effect counteracted by blockade of peripheral dopamine type 2 receptors (DA2Rs). Furthermore, nicotine reduced dopamine (DA) content and increased the expression of tyrosine hydroxylase (TH) in the carotid bodies, further suggesting that DA mediates the acute effect of nicotine on arterial chemoreceptor function. During postnatal development TH and DA2R mRNA levels in the carotid bodies decreased. Thus, nicotine from smoking may also interfere with the postnatal resetting of the oxygen sensitivity of the peripheral arterial chemoreceptors by increasing carotid body TH mRNA, as well as DA release in this period. Collectively these effects of nicotine on the peripheral arterial chemoreceptors may increase the vulnerability to hypoxic episodes and attenuate the protective chemoreflex response. These mechanisms may underlie the well-known relation between maternal smoking and sudden infant death syndrome.