946 resultados para injury data quality
Resumo:
Even when data repositories exhibit near perfect data quality, users may formulate queries that do not correspond to the information requested. Users’ poor information retrieval performance may arise from either problems understanding of the data models that represent the real world systems, or their query skills. This research focuses on users’ understanding of the data structures, i.e., their ability to map the information request and the data model. The Bunge-Wand-Weber ontology was used to formulate three sets of hypotheses. Two laboratory experiments (one using a small data model and one using a larger data model) tested the effect of ontological clarity on users’ performance when undertaking component, record, and aggregate level tasks. The results indicate for the hypotheses associated with different representations but equivalent semantics that parsimonious data model participants performed better for component level tasks but that ontologically clearer data model participants performed better for record and aggregate level tasks.
Resumo:
Substantial altimetry datasets collected by different satellites have only become available during the past five years, but the future will bring a variety of new altimetry missions, both parallel and consecutive in time. The characteristics of each produced dataset vary with the different orbital heights and inclinations of the spacecraft, as well as with the technical properties of the radar instrument. An integral analysis of datasets with different properties offers advantages both in terms of data quantity and data quality. This thesis is concerned with the development of the means for such integral analysis, in particular for dynamic solutions in which precise orbits for the satellites are computed simultaneously. The first half of the thesis discusses the theory and numerical implementation of dynamic multi-satellite altimetry analysis. The most important aspect of this analysis is the application of dual satellite altimetry crossover points as a bi-directional tracking data type in simultaneous orbit solutions. The central problem is that the spatial and temporal distributions of the crossovers are in conflict with the time-organised nature of traditional solution methods. Their application to the adjustment of the orbits of both satellites involved in a dual crossover therefore requires several fundamental changes of the classical least-squares prediction/correction methods. The second part of the thesis applies the developed numerical techniques to the problems of precise orbit computation and gravity field adjustment, using the altimetry datasets of ERS-1 and TOPEX/Poseidon. Although the two datasets can be considered less compatible that those of planned future satellite missions, the obtained results adequately illustrate the merits of a simultaneous solution technique. In particular, the geographically correlated orbit error is partially observable from a dataset consisting of crossover differences between two sufficiently different altimetry datasets, while being unobservable from the analysis of altimetry data of both satellites individually. This error signal, which has a substantial gravity-induced component, can be employed advantageously in simultaneous solutions for the two satellites in which also the harmonic coefficients of the gravity field model are estimated.
Resumo:
Geospatial data have become a crucial input for the scientific community for understanding the environment and developing environmental management policies. The Global Earth Observation System of Systems (GEOSS) Clearinghouse is a catalogue and search engine that provides access to the Earth Observation metadata. However, metadata are often not easily understood by users, especially when presented in ISO XML encoding. Data quality included in the metadata is basic for users to select datasets suitable for them. This work aims to help users to understand the quality information held in metadata records and to provide the results to geospatial users in an understandable and comparable way. Thus, we have developed an enhanced tool (Rubric-Q) for visually assessing the metadata quality information and quantifying the degree of metadata population. Rubric-Q is an extension of a previous NOAA Rubric tool used as a metadata training and improvement instrument. The paper also presents a thorough assessment of the quality information by applying the Rubric-Q to all dataset metadata records available in the GEOSS Clearinghouse. The results reveal that just 8.7% of the datasets have some quality element described in the metadata, 63.4% have some lineage element documented, and merely 1.2% has some usage element described. © 2013 IEEE.
Resumo:
The purpose of the work is to claim that engineers can be motivated to study statistical concepts by using the applications in their experience connected with Statistical ideas. The main idea is to choose a data from the manufacturing factility (for example, output from CMM machine) and explain that even if the parts used do not meet exact specifications they are used in production. By graphing the data one can show that the error is random but follows a distribution, that is, there is regularily in the data in statistical sense. As the error distribution is continuous, we advocate that the concept of randomness be introducted starting with continuous random variables with probabilities connected with areas under the density. The discrete random variables are then introduced in terms of decision connected with size of the errors before generalizing to abstract concept of probability. Using software, they can then be motivated to study statistical analysis of the data they encounter and the use of this analysis to make engineering and management decisions.
Resumo:
The purpose of this study was to develop, explicate, and validate a comprehensive model in order to more effectively assess community injury prevention needs, plan and target efforts, identify potential interventions, and provide a framework for an outcome-based evaluation of the effectiveness of interventions. A systems model approach was developed to conceptualize the major components of inputs, efforts, outcomes and feedback within a community setting. Profiling of multiple data sources demonstrated a community feedback mechanism that increased awareness of priority issues and elicited support from traditional as well as non-traditional injury prevention partners. Injury countermeasures including education, enforcement, engineering, and economic incentives were presented for their potential synergistic effect impacting on knowledge, attitudes, or behaviors of a targeted population. Levels of outcome data were classified into ultimate, intermediate and immediate indicators to assist with determining the effectiveness of intervention efforts. A collaboration between business and health care was successful in achieving data access and use of an emergency department level of injury data for monitoring of the impact of community interventions. Evaluation of injury events and preventive efforts within the context of a dynamic community systems environment was applied to a study community with examples detailing actual profiling and trending of injuries. The resulting model of community injury prevention was validated using a community focus group, community injury prevention coordinators, and injury prevention national experts. ^
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, non-integrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. ^ A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. ^ One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects. ^
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, nonintegrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects.
Resumo:
The increasing prevalence of Repetitive Strain Injury / Work-Related Musculoskeletal Disorders (RSI / MSDs) has been explained by changes in the work that has been characterized by setting goals and productivity. This fact does not take into account the psycho-physiological characteristics of workers who become ill as a result of professional activities engaged in and also the adverse conditions in which his work was done. This study aimed to analyze the RSI / MSDs reported in the state of Rio Grande do Norte, Brazil, 2010-2014 compared to the profile of the population, epidemiological aspects and features of these diseases. It is a descriptive epidemiological cross-sectional study using secondary data obtained in the Notifiable Diseases Information System (SINAN) in May 2015 was used as the area covered by the Rio Grande do Norte. Data were collected regarding the grievances of work-related RSI / MSDs, assigned by the Worker's Health Reference Center (CEREST) of the State Health Department. Data were processed with the help of Microsoft Excel® 2013 and presented in tables in absolute frequency (n) and relative frequency (%). The results showed a total of 403 notifications of RSI / MSDs, where the vast majority 72% (290) was recorded in Natal. Regarding the profile of notified employees, 88.59% (357) have aged between 25 and 54 years, 62.78% (253) were female, and in relation to education, 31.51% (127) had high school complete. The most affected occupations were seamstresses (the clothing industry) with 24.97% (97), followed by masons, construction with 3.23% (13) and cashiers with 2.99% (12). About the work situation, 75.93% (306) had a formal contract, however, were sent to Communications Occupational accidents (CAT) only 67% (270) of the cases. Regarding the signs and symptoms, pain and limitation of movement were the most mentioned respectively with 98.01% (395) and 95.04% (383) of notifications. Notifications, 94.29% (380) showed exposure to repetitive movements in their workplace. The most frequent specific diagnoses were synovitis and tenosynovitis (CID F 65), with 30.02% (121) of notifications, followed by back pain (CID F 54) to 19.35% (78) and shoulder injuries (ICD M 75) with 15.88% (64). They were away from work 81.64% (329) of workers reported with RSI / MSDs. Evolution more prevalent among cases was temporary disability with 75.68% (305). It was concluded that the SINAN is a database of potential to characterize the profile of RSI / MSDs, requiring, however, an improvement in the coverage of records and data quality. In addition, this study reflects the need to implement protection strategies to workers by companies, signaling promotion, prevention and rehabilitation aimed at reducing these injuries and the improvement of occupational health indicators in Rio Grande do Norte.
Resumo:
An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in various open ocean areas representative of the diversity of trophic and bio-optical conditions prevailing in the so-called Case 1 waters. Around solar noon and almost everyday, each float acquires 0-250 m vertical profiles of Photosynthetically Available Radiation and downward irradiance at three wavelengths (380, 412 and 490 nm). Up until now, more than 6500 profiles for each radiometric channel have been acquired. As these radiometric data are collected out of operator’s control and regardless of meteorological conditions, specific and automatic data processing protocols have to be developed. Here, we present a data quality-control procedure aimed at verifying profile shapes and providing near real-time data distribution. This procedure is specifically developed to: 1) identify main issues of measurements (i.e. dark signal, atmospheric clouds, spikes and wave-focusing occurrences); 2) validate the final data with a hierarchy of tests to ensure a scientific utilization. The procedure, adapted to each of the four radiometric channels, is designed to flag each profile in a way compliant with the data management procedure used by the Argo program. Main perturbations in the light field are identified by the new protocols with good performances over the whole dataset. This highlights its potential applicability at the global scale. Finally, the comparison with modeled surface irradiances allows assessing the accuracy of quality-controlled measured irradiance values and identifying any possible evolution over the float lifetime due to biofouling and instrumental drift.
Resumo:
An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in various open ocean areas representative of the diversity of trophic and bio-optical conditions prevailing in the so-called Case 1 waters. Around solar noon and almost everyday, each float acquires 0-250 m vertical profiles of Photosynthetically Available Radiation and downward irradiance at three wavelengths (380, 412 and 490 nm). Up until now, more than 6500 profiles for each radiometric channel have been acquired. As these radiometric data are collected out of operator’s control and regardless of meteorological conditions, specific and automatic data processing protocols have to be developed. Here, we present a data quality-control procedure aimed at verifying profile shapes and providing near real-time data distribution. This procedure is specifically developed to: 1) identify main issues of measurements (i.e. dark signal, atmospheric clouds, spikes and wave-focusing occurrences); 2) validate the final data with a hierarchy of tests to ensure a scientific utilization. The procedure, adapted to each of the four radiometric channels, is designed to flag each profile in a way compliant with the data management procedure used by the Argo program. Main perturbations in the light field are identified by the new protocols with good performances over the whole dataset. This highlights its potential applicability at the global scale. Finally, the comparison with modeled surface irradiances allows assessing the accuracy of quality-controlled measured irradiance values and identifying any possible evolution over the float lifetime due to biofouling and instrumental drift.
Resumo:
The speed with which data has moved from being scarce, expensive and valuable, thus justifying detailed and careful verification and analysis to a situation where the streams of detailed data are almost too large to handle has caused a series of shifts to occur. Legal systems already have severe problems keeping up with, or even in touch with, the rate at which unexpected outcomes flow from information technology. The capacity to harness massive quantities of existing data has driven Big Data applications until recently. Now the data flows in real time are rising swiftly, become more invasive and offer monitoring potential that is eagerly sought by commerce and government alike. The ambiguities as to who own this often quite remarkably intrusive personal data need to be resolved – and rapidly - but are likely to encounter rising resistance from industrial and commercial bodies who see this data flow as ‘theirs’. There have been many changes in ICT that has led to stresses in the resolution of the conflicts between IP exploiters and their customers, but this one is of a different scale due to the wide potential for individual customisation of pricing, identification and the rising commercial value of integrated streams of diverse personal data. A new reconciliation between the parties involved is needed. New business models, and a shift in the current confusions over who owns what data into alignments that are in better accord with the community expectations. After all they are the customers, and the emergence of information monopolies needs to be balanced by appropriate consumer/subject rights. This will be a difficult discussion, but one that is needed to realise the great benefits to all that are clearly available if these issues can be positively resolved. The customers need to make these data flow contestable in some form. These Big data flows are only going to grow and become ever more instructive. A better balance is necessary, For the first time these changes are directly affecting governance of democracies, as the very effective micro targeting tools deployed in recent elections have shown. Yet the data gathered is not available to the subjects. This is not a survivable social model. The Private Data Commons needs our help. Businesses and governments exploit big data without regard for issues of legality, data quality, disparate data meanings, and process quality. This often results in poor decisions, with individuals bearing the greatest risk. The threats harbored by big data extend far beyond the individual, however, and call for new legal structures, business processes, and concepts such as a Private Data Commons. This Web extra is the audio part of a video in which author Marcus Wigan expands on his article "Big Data's Big Unintended Consequences" and discusses how businesses and governments exploit big data without regard for issues of legality, data quality, disparate data meanings, and process quality. This often results in poor decisions, with individuals bearing the greatest risk. The threats harbored by big data extend far beyond the individual, however, and call for new legal structures, business processes, and concepts such as a Private Data Commons.
Resumo:
This document does NOT address the issue of oxygen data quality control (either real-time or delayed mode). As a preliminary step towards that goal, this document seeks to ensure that all countries deploying floats equipped with oxygen sensors document the data and metadata related to these floats properly. We produced this document in response to action item 14 from the AST-10 meeting in Hangzhou (March 22-23, 2009). Action item 14: Denis Gilbert to work with Taiyo Kobayashi and Virginie Thierry to ensure DACs are processing oxygen data according to recommendations. If the recommendations contained herein are followed, we will end up with a more uniform set of oxygen data within the Argo data system, allowing users to begin analysing not only their own oxygen data, but also those of others, in the true spirit of Argo data sharing. Indications provided in this document are valid as of the date of writing this document. It is very likely that changes in sensors, calibrations and conversions equations will occur in the future. Please contact V. Thierry (vthierry@ifremer.fr) for any inconsistencies or missing information. A dedicated webpage on the Argo Data Management website (www) contains all information regarding Argo oxygen data management : current and previous version of this cookbook, oxygen sensor manuals, calibration sheet examples, examples of matlab code to process oxygen data, test data, etc..
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.
Resumo:
Recent marine long-offset transient electromagnetic (LOTEM) measurements yielded the offshore delineation of a fresh groundwater body beneath the seafloor in the region of Bat Yam, Israel. The LOTEM application was effective in detecting this freshwater body underneath the Mediterranean Sea and allowed an estimation of its seaward extent. However, the measured data set was insufficient to understand the hydrogeological configuration and mechanism controlling the occurrence of this fresh groundwater discovery. Especially the lateral geometry of the freshwater boundary, important for the hydrogeological modelling, could not be resolved. Without such an understanding, a rational management of this unexploited groundwater reservoir is not possible. Two new high-resolution marine time-domain electromagnetic methods are theoretically developed to derive the hydrogeological structure of the western aquifer boundary. The first is called Circular Electric Dipole (CED). It is the land-based analogous of the Vertical Electric Dipole (VED), which is commonly applied to detect resistive structures in the subsurface. Although the CED shows exceptional detectability characteristics in the step-off signal towards the sub-seafloor freshwater body, an actual application was not carried out in the extent of this study. It was found that the method suffers from an insufficient signal strength to adequately delineate the resistive aquifer under realistic noise conditions. Moreover, modelling studies demonstrated that severe signal distortions are caused by the slightest geometrical inaccuracies. As a result, a successful application of CED in Israel proved to be rather doubtful. A second method called Differential Electric Dipole (DED) is developed as an alternative to the intended CED method. Compared to the conventional marine time-domain electromagnetic system that commonly applies a horizontal electric dipole transmitter, the DED is composed of two horizontal electric dipoles in an in-line configuration that share a common central electrode. Theoretically, DED has similar detectability/resolution characteristics compared to the conventional LOTEM system. However, the superior lateral resolution towards multi-dimensional resistivity structures make an application desirable. Furthermore, the method is less susceptible towards geometrical errors making an application in Israel feasible. In the extent of this thesis, the novel marine DED method is substantiated using several one-dimensional (1D) and multi-dimensional (2D/3D) modelling studies. The main emphasis lies on the application in Israel. Preliminary resistivity models are derived from the previous marine LOTEM measurement and tested for a DED application. The DED method is effective in locating the two-dimensional resistivity structure at the western aquifer boundary. Moreover, a prediction regarding the hydrogeological boundary conditions are feasible, provided a brackish water zone exists at the head of the interface. A seafloor-based DED transmitter/receiver system is designed and built at the Institute of Geophysics and Meteorology at the University of Cologne. The first DED measurements were carried out in Israel in April 2016. The acquired data set is the first of its kind. The measured data is processed and subsequently interpreted using 1D inversion. The intended aim of interpreting both step-on and step-off signals failed, due to the insufficient data quality of the latter. Yet, the 1D inversion models of the DED step-on signals clearly detect the freshwater body for receivers located close to the Israeli coast. Additionally, a lateral resistivity contrast is observable in the 1D inversion models that allow to constrain the seaward extent of this freshwater body. A large-scale 2D modelling study followed the 1D interpretation. In total, 425 600 forward calculations are conducted to find a sub-seafloor resistivity distribution that adequately explains the measured data. The results indicate that the western aquifer boundary is located at 3600 m - 3700 m before the coast. Moreover, a brackish water zone of 3 Omega*m to 5 Omega*m with a lateral extent of less than 300 m is likely located at the head of the freshwater aquifer. Based on these results, it is predicted that the sub-seafloor freshwater body is indeed open to the sea and may be vulnerable to seawater intrusion.
Resumo:
Collecting ground truth data is an important step to be accomplished before performing a supervised classification. However, its quality depends on human, financial and time ressources. It is then important to apply a validation process to assess the reliability of the acquired data. In this study, agricultural infomation was collected in the Brazilian Amazonian State of Mato Grosso in order to map crop expansion based on MODIS EVI temporal profiles. The field work was carried out through interviews for the years 2005-2006 and 2006-2007. This work presents a methodology to validate the training data quality and determine the optimal sample to be used according to the classifier employed. The technique is based on the detection of outlier pixels for each class and is carried out by computing Mahalanobis distances for each pixel. The higher the distance, the further the pixel is from the class centre. Preliminary observations through variation coefficent validate the efficiency of the technique to detect outliers. Then, various subsamples are defined by applying different thresholds to exclude outlier pixels from the classification process. The classification results prove the robustness of the Maximum Likelihood and Spectral Angle Mapper classifiers. Indeed, those classifiers were insensitive to outlier exclusion. On the contrary, the decision tree classifier showed better results when deleting 7.5% of pixels in the training data. The technique managed to detect outliers for all classes. In this study, few outliers were present in the training data, so that the classification quality was not deeply affected by the outliers.