952 resultados para inhaled nitric oxide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunocytochemical techniques were used to examine the distribution of neurons immunoreactive (-ir) for nitric oxide synthase (nNOS), somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), calbindin (CB) and calretinin (CH), in the inferotemporal gyros (Brodmann's area 21) of the human neocortex. Neurons that colocalized either nNOS or SOM with PV, CB or CR were also identified by double-labeling techniques. Furthermore, glutamate receptor subunit profiles (GluR1, GluR2/3, GluR2/4, GluR5/6/7 and NMDAR1) were also determined for these cells. The number and distribution of cells containing nNOS, SOM, NPY, PV, CB or CR differed for each antigen. In addition, distinct subpopulations of neurons displayed different degrees of colocalization of these antigens depending on which antigens were compared. Moreover, cells that contained nNOS, SOM, NPY, PV, GB or CR expressed different receptor subunit profiles. These results show that specific subpopulations of neurochemically identified nonpyramidal cells may be activated via different receptor subtypes. As these different subpopulations of cells project to specific regions of pyramidal calls, facilitation of subsets of these cells via different receptor subunits may activate different inhibitory circuits. Thus, various distinct, but overlapping, inhibitory circuits may act in concert in the modulation of normal cortical function, plasticity and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A marine model of oral candidiasis was used to show that nitric oxide (NO) is involved in host resistance to infection with Candida albicans in infection-'resistant' BALB/c and infection-'prone' DBA/2 mice. Following infection, increased NO production was detected in saliva. Postinfection samples of saliva inhibited the growth of yeast in vitro. Treatment with N-G-monomethyl-L-arginine (MMLA), an inhibitor of NO synthesis, led to reduced NO production, which correlated with an increase in C. albicans growth. Reduction in NO production following MMLA treatment correlated with an abrogation of interleukin-4 (IL-4), but not interferon-gamma (IFN-gamma), mRNA gene expression in regional lymph node cells. Down-regulation of IL-4 production was accompanied with an increase in IFN-gamma production in infection-'prone' DBA/2 mice. There was a functional relationship between IL-4 and NO production in that mice treated with anti-IL-4 monoclonal antibody showed a marked inhibition of NO production in saliva and in culture of cervical lymph node cells stimulated with C albicans antigen. The results Support previous conclusions that IL-4 is associated with resistance to oral candidiasis and suggest that NO is involved in controlling colonization of the oral mucosal surface with C albicans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of five neuropeptides (CGRP, SOM, SP, NPY, VIP), L-NAME (nitric oxide synthase inhibitor), and adrenaline on the contractile tone of the aortic anastomosis in the estuarine crocodile, Crocodylus porosus, were investigated. None of the neuropeptides, which had previously been found to be present in the aortic anastomosis, had any direct effect on the tension developed by ring preparations. L-NAME itself significantly increased the basal tone of the vascular ring preparations, suggesting a tonic release of nitric oxide in the preparation. Adrenaline produced concentration-dependent vasoconstrictions that were counteracted by profound reflex vasodilatations that were susceptible to blockade by L-NAME. Immunohistochemistry revealed the presence of nitric oxide synthase and tyrosine hydroxylase-containing (indicating the presence of a adrenergic innervation) nerve fibres in the adventitia and adventitio-medial border of the aortic anastomosis. These data demonstrate opposing actions of adrenaline and nitric oxide on the vascular smooth muscle in the anastomosis of the C. porosus. The morphology of the anastomosis, with the extremely thick muscular vessel wall, suggests a sphincter-like function for this vessel that could be controlled mainly by adrenergic and nitrergic mechanisms, (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Inhibition of rat platelet aggregation by the nitric oxide (NO) donor MAHMA NONOate (Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino]}diazen-l-ium-1,2-diolate) was investigated. The aims were to compare its anti-aggregatory effect with vasorelaxation, to determine the effects of the soluble guanylate cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-ajquinoxalin-1-one), and to investigate the possible role of activation of sarco-encloplasmic reticulum calcium-ATPase (SERCA), independent of soluble guanylate cyclase, using thapsigargin. 2 MAHMA NONOate concentration-dependently inhibited sub-maximal aggregation responses to collagen (2 - 10 mug ml(-1)) and adenosine diphosphate (ADP; 2 mum) in platelet rich plasma. It was (i) more effective at inhibiting aggregation induced by collagen than by ADP, and (ii) less potent at inhibiting platelet aggregation than relaxing rat pulmonary artery. 3 ODQ (10 mum) caused only a small shift (approximately half a log unit) in the concentration-response curve to MAHMA NONOate irrespective of the aggregating agent. 4 The NO-independent activator of soluble guanylate cyclase, YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzy] indazole; 1 - 100 mum), did not inhibit aggregation. The cGMP analogue, 8-pCPT-cGMP (8-(4-chlorophenylthio)guanosine 3'5' cyclic monophosphate; 0.1 - 1 mm), caused minimal inhibition. 5 On collagen-aggregated platelets responses to MAHMA NONOate (ODQ 10 PM present) were abolished by thapsigargin (200 nm). On ADP-aggregated platelets thapsigargin caused partial inhibition. 6 Results with S-nitrosoglutathione (GSNO) resembled those with MAHMA NONOate. Glyceryl trinitrate and sodium nitroprusside were poor inhibitors of aggregation. 7 Thus inhibition of rat platelet aggregation by MAHMA NONOate (like GSNO) is largely ODQ-resistant and, by implication, independent of soluble guanylate cyclase. A likely mechanism of inhibition is activation of SERCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: This study was designed to investigate the influence of angiotensin II (Ang II) and nitric oxide (NO) on autoregulation of renal perfusion. Methods: Autoregulation was investigated in isolated perfused kidneys (IPRK) from Sprague-Dawley rats during stepped increases in perfusion pressure. Results: Ang II (75-200 pM) produced dose-dependent enhancement of autoregulation whereas phenylephrine produced no enhancement and impaired autoregulation of GFR. Enhancement by Ang II was inhibited by the AT(1) antagonist, Losartan, and the superoxide scavenger, Tempol. Under control conditions nitric oxide synthase (NOS) inhibition by 10 muM N-omega-nitro-L-arginine methyl ester (L-NAME) facilitated autoregulation in the presence of non-specific cyclooxygenase (COX) inhibition by 10 muM indomethacin. Both COX and combined NOS/COX inhibition reduced the autoregulatory threshold concentration of Ang II. Facilitation by 100 pM Ang II was inhibited by 100 muM frusemide. Methacholine (50 nM) antagonised Ang II-facilitated autoregulation in the presence and absence of NOS/COX inhibition. Infusion of the NO donor, 1 muM sodium nitroprusside, inhibited L-NAME enhancement of autoregulation under control conditions and during Ang II infusion. Conclusions: The results suggest than an excess of NO impairs autoregulation under control conditions in the IPRK and that endogenous and exogenous NO, vasodilatory prostaglandins and endothelium-derived hyperpolarizing factor (EDHF) activity antagonise Ang II-facilitated autoregulation. Ang II also produced a counterregulatory vasodilatory response that included prostaglandin and NO release. We suggest that Ang II facilitates autoregulation by a tubuloglomerular feedback-dependent mechanism through AT(1) receptor-mediated depletion of nitric oxide, probably by stimulating generation of superoxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The platelet inhibitory effects of the nitric oxide (NO) donor drug MAHMA NONOate ((Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino] diazen-1-ium-1,2-diolate) were examined in anaesthetised rats and compared with those of S-nitrosoglutathione (GSNO; an S-nitrosothiol). Bolus administration of the aggregating agent ADP dose-dependently reduced the number of circulating free platelets. Intravenous infusions of MAHMA NONOate (3-30 nmol/kg/min) dose-dependently inhibited the effect of 0.3 mumol/kg ADP. MAHMA NONOate was approximately 10-fold more potent than GSNO. MAHMA NONOate (0.3-10 nmol/kg/min) also reduced systemic artery pressure and was again 10-fold more potent than GSNO. Thus MAHMA NONOate has both platelet inhibitory and vasodepressor effects in vivo. The dose ranges for these two effects overlapped, although blood pressure was affected at slightly lower doses. The platelet inhibitory effects compared favourably with those of GSNO, even though NONOates generate free radical NO which, in theory, could have been scavenged by haemoglobin. Therefore platelet inhibition may be a useful therapeutic property of NONOates. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperhomocysteinemia (HHcy) is a risk factor for vascular disease, but the underlying mechanisms remain incompletely defined. Reduced bioavailability of nitric oxide (NO) is a principal manifestation of underlying endothelial dysfunction, which is an initial event in vascular disease. Inhibition of cellular methylation reactions by S-adenosylhomocysteine (AdoHcy), which accumulates during HHcy, has been suggested to contribute to vascular dysfunction. However, thus far, the effect of intracellular AdoHcy accumulation on NO bioavailability has not yet been fully substantiated by experimental evidence. The present study was carried out to evaluate whether disturbances in cellular methylation status affect NO production by cultured human endothelial cells. Here, we show that a hypomethylating environment, induced by the accumulation of AdoHcy, impairs NO production. Consistent with this finding, we observed decreased eNOS expression and activity, but, by contrast, enhanced NOS3 transcription. Taken together, our data support the existence of regulatory post-transcriptional mechanisms modulated by cellular methylation potential leading to impaired NO production by cultured human endothelial cells. As such, our conclusions may have implications for the HHcy-mediated reductions in NO bioavailability and endothelial dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new fluorescent sensor for nitric oxide (NO) is presented that is based on its reaction with a non fluorescent substance, reduced fluoresceinamine, producing the highly fluorescent fluoresceinamine. Using a portable homemade stabilized light source consisting of 450 nm LED and fiber optics to guide the light, the sensor responds linearly within seconds in the NO concentration range between about 10–750 µM with a limit of detection (LOD) of about 1 µM. The system generated precise intensity readings, with a relative standard deviation of less than 1%. The suitability of the sensor was assessed by monitoring the NO generated by either the nitrous acid decomposition reaction or from a NO-releasing compound. Using relatively high incubation times, the sensor also responds quantitatively to hydrogen peroxide and potassium superoxide, however, using transient signal measurements results in no interfering species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a chronic granulomatous disease that induces a specific inflammatory and immune response. The participation of nitric oxide (NO), a product of the inducible nitric oxide synthase enzyme (iNOS), as an important fungicidal molecule against Paracoccidioides brasiliensis has been demonstrated. In order to further characterize the Oral Paracoccidioidomycosis (OP), we undertook an immunohistochemical study of iNOS+, CD45RO+, CD3+, CD8+, CD20+, CD68+ cells and mast cells. The samples were distributed in groups according to the number of viable fungi per mm². Our results showed weak immunolabeling for iNOS in the multinucleated giant cells (MNGC) and in most of the mononuclear (MN) cells, and the proportion of iNOS+ MN/MNGC cells in the OP were comparable to Control (clinically healthy oral tissues). Additionally, our analysis revealed a similarity in the number of CD4+ cells between the Control and the OP groups with higher numbers of fungi. These findings suggest that a low expression of iNOS and a decrease in the CD4+ T cells in OP may represent possible mechanisms that permit the local fungal multiplication and maintenance of active oral lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron is an essential growth element of virtually all microorganisms and its restriction is one of the mechanisms used by macrophages to control microbial multiplication. Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis, an important systemic mycosis in Latin America, is inhibited in its conidia-to-yeast conversion in the absence of iron. We studied the participation of iron in the nitric oxide (NO)-mediated fungicidal mechanism against conidia. Peritoneal murine macrophages activated with 50U/mL of IFN-gamma or treated with 35 µM Deferoxamine (DEX) and infected with P. brasiliensis conidia, were co-cultured and incubated for 96 h in the presence of different concentrations of holotransferrin (HOLO) and FeS0(4). The supernatants were withdrawn in order to assess NO2 production by the Griess method. The monolayers were fixed, stained and observed microscopically. The percentage of the conidia-to-yeast transition was estimated by counting 200 intracellular propagules. IFN-gamma-activated or DEX-treated Mthetas presented marked inhibition of the conidia-to-yeast conversion (19 and 56%, respectively) in comparison with non-activated or untreated Mthetas (80%). IFN-gamma-activated macrophages produced high NO levels in comparison with the controls. Additionally, when the activated or treated-macrophages were supplemented with iron donors (HOLO or FeSO4), the inhibitory action was reversed, although NO production remained intact. These results suggest that the NO-mediated fungicidal mechanism exerted by IFN-gamma-activated macrophages against P. brasiliensis conidia, is dependent of an iron interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Flaviviridae family, Flavivirus genus includes viruses that are transmitted to vertebrates by infected mosquitoes or ticks. The genus Flavivirus includes a variety of viruses that cause diseases such as acute febrile illness, encephalitis, and hemorrhagic fever. Flaviviruses primarily infect blood monocytes and tissue macrophages, which have been shown to be permissive, supporting viral replication and serving as virus reservoirs. On the other hand, these cells may have an important antiviral activity related to modulation by cytokine production and by the capacity of these cells to synthesize reactive free radicals such as nitric oxide (NO) which can have a microbicidal effect. The present study was performed in order to determine the production of cytokines interleukin-1beta (IL-1β), tumor necrosis factor -alpha (TNF-α), transforming growth factor- beta (TGF-β) and interferon -alpha (IFN-α) and NO by macrophages infected with one of four Brazilian flaviviruses, Bussuquara virus (BUSV), Yellow Fever virus (YFV), Rocio virus (ROCV) and Encephalitis Saint Louis virus (SLEV), and to verify the possible antiviral effect of NO during macrophage infection with ROCV. Moreover, we asked if the different viruses were able to regulate bacterial lipopolysaccharide (LPS) induced cytokine production. Our results showed that YFV and SLEV reduced the production of IL-1β and TGF-β by LPS-stimulated macrophages, while ROCV only diminished LPS-stimulated TGF-β synthesis. On the other hand, BUSV more likely favored an enhancement of the LPS-induced production of IL-1β by macrophages. Additionally, while most of the viruses stimulated the production of IFN-α, none of them altered the production of TNF-α by murine macrophages. Interestingly, all viruses induced synthesis of NO that was not correlated with antiviral activity for ROCV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twelve strains of Trypanosoma cruzi isolated from wild reservoirs, triatomines, and chronic chagasic patients in the state of Paraná, southern Brazil, and classified as T. cruzi I and II, were used to test the correlation between genetic and biological diversity. The Phagocytic Index (PI) and nitric-oxide (NO) production in vitro were used as biological parameters. The PI of the T. cruzi I and II strains did not differ significantly, nor did the PI of the T. cruzi strains isolated from humans, triatomines, or wild reservoirs. There was a statistical difference in the inhibition of NO production between T. cruzi I and II and between parasites isolated from humans and the strains isolated from triatomines and wild reservoirs, but there was no correlation between genetics and biology when the strains were analyzed independently of the lineages or hosts from which the strains were isolated. There were significant correlations for Randomly Amplified Polymorphic Deoxyribonucleic acid (RAPD) and biological parameters for T. cruzi I and II, and for humans or wild reservoirs when the lineages or hosts were considered individually.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemistry, 2011, 50 (20), pp 4251–4262 DOI: 10.1021/bi101605p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein Sci. 2009 Mar;18(3):619-28. doi: 10.1002/pro.69.