999 resultados para influence diagrams


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine whether pre-exercise muscle glycogen content influences the transcription of several early-response genes involved in the regulation of muscle growth, seven male strength-trained subjects performed one-legged cycling exercise to exhaustion to lower muscle glycogen levels (Low) in one leg compared with the leg with normal muscle glycogen (Norm) and then the following day completed a unilateral bout of resistance training (RT). Muscle biopsies from both legs were taken at rest, immediately after RT, and after 3 h of recovery. Resting glycogen content was higher in the control leg (Norm leg) than in the Low leg (435 ± 87 vs. 193 ± 29 mmol/kg dry wt; P < 0.01). RT decreased glycogen content in both legs (P < 0.05), but postexercise values remained significantly higher in the Norm than the Low leg (312 ± 129 vs. 102 ± 34 mmol/kg dry wt; P < 0.01). GLUT4 (3-fold; P < 0.01) and glycogenin mRNA abundance (2.5-fold; not significant) were elevated at rest in the Norm leg, but such differences were abolished after exercise. Preexercise mRNA abundance of atrogenes was also higher in the Norm compared with the Low leg [atrogin: ?14-fold, P < 0.01; RING (really interesting novel gene) finger: ?3-fold, P < 0.05] but decreased for atrogin in Norm following RT (P < 0.05). There were no differences in the mRNA abundance of myogenic regulatory factors and IGF-I in the Norm compared with the Low leg. Our results demonstrate that 1) low muscle glycogen content has variable effects on the basal transcription of select metabolic and myogenic genes at rest, and 2) any differences in basal transcription are completely abolished after a single bout of heavy resistance training. We conclude that commencing resistance exercise with low muscle glycogen does not enhance the activity of genes implicated in promoting hypertrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An application of image processing techniques to recognition of hand-drawn circuit diagrams is presented. The scanned image of a diagram is pre-processed to remove noise and converted to bilevel. Morphological operations are applied to obtain a clean, connected representation using thinned lines. The diagram comprises of nodes, connections and components. Nodes and components are segmented using appropriate thresholds on a spatially varying object pixel density. Connection paths are traced using a pixel-stack. Nodes are classified using syntactic analysis. Components are classified using a combination of invariant moments, scalar pixel-distribution features, and vector relationships between straight lines in polygonal representations. A node recognition accuracy of 82% and a component recognition accuracy of 86% was achieved on a database comprising 107 nodes and 449 components. This recogniser can be used for layout “beautification” or to generate input code for circuit analysis and simulation packages