979 resultados para industrial processes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The heavy metals are used in many industrial processes and when discharged to the environment can cause harmful effects to human, plants and animals. The adsorption technology has been used as an effective methodology to remove metallic ions. The search for new adsorbents motivated the development of this research, accomplished with the purpose of removing Cr (III) from aqueous solutions. Diatomite, chitosan, Filtrol 24TM and active carbon were used as adsorbents. To modify the adsorbent surface was used a bicontinuous microemulsion composed by water (25%), kerosene (25%), saponified coconut oil (10%) and as co-surfactant isoamyl or butyl alcohols (40%). With the objective of developing the best operational conditions the research started with the surfactant synthesis and after that the pseudo-ternary diagrams were plotted. It was decided to use the system composed with isoamyl alcohol as co-surfactant due its smallest solubility in water. The methodology to impregnate the microemulsion on the adsorbents was developed and to prepare each sample was used 10 g of adsorbent and 20 mL of microemulsion. The effect of drying time and temperature was evaluated and the best results were obtained with T = 65 ºC and t = 48 h. After evaluating the efficiency of the tested adsorbents it was decided to use chitosan and diatomite. The influence of the agitation speed, granule size, heavy metal synthetic solution concentration, pH, contact time between adsorbent and metal solution, presence or not of NaCl and others metallic ions in the solution (copper and nickel) were evaluated. The adsorption isotherms were obtained and Freundlich and Langmuir models were tested. The last one correlated better the data. With the purpose to evaluate if using a surfactant solution would supply similar results, the adsorbent surface was modified with this solution. It was verified that the adsorbent impregnated with a microemulsion was more effective than the one with a surfactant solution, showing that the organic phase (kerosene) was important in the heavy metal removal process. It was studied the desorption process and verified that the concentrated minerals acids removed the chromium from the adsorbent surface better than others tested solutions. The treatment showed to be effective, being obtained an increase of approximately 10% in the chitosan s adsorption capacity (132 mg of Cr3+ / g adsorbent), that was already quite efficient, and for diatomite, that was not capable to remove the metal without the microemulsion treatment, it was obtained a capacity of 10 mg of Cr3+ / g adsorbent, checking the applied treatment effectiveness

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by beta-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 A degrees C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0-5.5. They were stable in the pH range 5.0-10.0 and 5.5-8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55C and 60 A degrees C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 A degrees C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Aspergillus giganteus strain was isolated as an excellent producer of xylanase associated with low levels of cellulase. Optimal xylanase production was obtained in liquid VOGEL medium containing xylan as carbon source, pH 6.5 to 7.0, at 25degreesC and. under shaking at 120 rpm during 84h. Among the several carbon sources tested, higher xylanase production was verified in xylan, xylose, sugar-cane bagasse, wheat bran and corn cob cultures, respectively. Optimal conditions for activity determination were 50degreesC and pH 6.0. The xylanolytic complex of A. giganteus showed low thermal stability with T-50 of 2 h, 13 min and I min when it was incubated at 40, 50 and 60degreesC, respectively, and high stability from pH 4.5 to 10.5, with the best interval between 7.0 to 7.5. This broad range of stability in alkali pH indicates a potential applicability in some industrial processes, which require such condition. Xylanolytic activity of A. giganteus was totally inhibited by Hg+2, Cu+2 and SDS at 10 mm. The analysis of the products from the oat spelts xylan hydrolysis through thin-layer chromatography indicated endoxylanase activity, lack of debranching enzymes and P-xylosidase activity in assay conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of extracellular cellulase-free xylanase from Trichoderma inhamatum was evaluated in liquid Vogel medium with different carbon sources as natural substrates and agricultural or agro-industrial wastes. Optimal production of 244.02 U/mL was obtained with xylan as carbon source, pH 6.0 at 25 degrees C, 120 rpm, and 60-h time culture. Optimal conditions for enzyme activity were 50 degrees C and pH 5.5. Thermal stability of T. inhamatum xylanolytic complex expressed as T(1/2) was 2.2 h at 40 degrees C and 2 min at 50 degrees C. The pH stability was high from 4.0 to 11.0.These results indicate possible employment of such enzymatic complex in some industrial processes which require activity in acid pH, wide-ranging pH stability, and cellulase activity absence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrasound effects on the release and activity of invertase from Aspergillus niger cultivated in a medium containing sucrose and peptone and in another with sugar-cane molasses and peptone were investigated. Irradiation was conducted for periods of 2 - 10 min. with waves of amplitude 20 and 40 using an ultrasound processor of 20 kHz. Product formation was determined as reducing equivalents formed by time units using 3,5-dinitrosalicylic acid. Total and specific activities of the culture supernatants were compared in the presence and absence of sonication. Both amplitudes promoted a significant increase of total invertase activity in the time periods investigated and the highest values were obtained with an amplitude of 20. Ultrasound irradiation caused cell disruption, thus releasing invertase and, after 4 min, activation of the enzyme also occurred. The best conditions for production, extraction and activation of invertase were in molasses medium containing peptone and irradiation with ultrasound waves at 20 for 8 min. This method showed high efficiency for the extraction and activation of invertase from A. niger as well as a great potential for use in industrial processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomass has gained prominence in the last few years as one of the most important renewable energy sources. In Brazil, a sugarcane ethanol program called ProAlcohol was designed to supply the liquid gasoline substitution and has been running for the last 30 yr. The federal government's establishment of ProAlcohol in 1975 created the grounds for the development of a sugarcane industry that currently is one of the most efficient systems for the conversion of photosynthate into different forms of energy. Improvement of industrial processes along with strong sugarcane breeding programs brought technologies that currently support a cropland of 7 million hectares of sugarcane with an average yield of 75 tons/ha. From the beginning of ProAlcohol to the present time, ethanol yield has grown from 2,500 to around 7,000 l/ha. New technologies for energy production from crushed sugarcane stalk are currently supplying 15% of the electricity needs of the country. Projections show that sugarcane could supply over 30% of Brazil's energy needs by 2020. In this review, we briefly describe some historic facts of the ethanol industry, the role of sugarcane breeding, and the prospects of sugarcane biotechnology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In industrial processes using aqueous solutions, corrosion of metal surfaces may occur at various locations. Much of the damage to steam generators and boilers is caused by corrosion. Dissolved oxygen in water is one of the most potent corrosion-causing factors, and therefore oxygen should be eliminated from steam-generating systems' feedwater. Chemical reduction, by reagents such as hydrazine or organic compounds, generally is used for the deoxygenation of water. This article reviews the major oxygen scavengers currently available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effluents and surface waters around an area involved with the inking of tissues at Itatiba municipality, São Paulo State, Brazil, were chemically analyzed with the purpose of evaluating the influence on the water quality of the chemicals released, as well to provide answers to legislative requirements related to the São Paulo State Register 997 published on 31 May 1976.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes a control and supervision application takes into account the virtual instrumentation advantages to control and supervision industrial manufacturing stations belonging to the modular production system MPS® by Festo. These stations integrate sensors, actuators, conveyor belt and other industrial elements. The focus in this approach was to replace the use of programmable logic controllers by a computer equipped with a software application based on Labview and, together, performs the functions of traditional instruments and PLCs. The manufacturing stations had their processes modeled and simulated in Petri nets. After the models were implemented in Labview environment. Tests and previous similar works in MPS® installed in Automation Laboratory, at UNESP Sorocaba campus, showed the materials and methods used in this work allow the successful use of virtual instrumentation. The results indicate the technology as an advantageous approach for the automation of industrial processes, with gains in flexibility and reduction in project cost. © 2011 IEEE.