951 resultados para industrial application
Resumo:
The H5 program with the complete rebuild of the guide system and the upgrade or renovation of all instruments leads to a tremendous increase of the instrument performances. The improvement was obtained both in terms of more useful flux and upgrade of the different instruments (e.g. higher field density for IN15). In addition, the industrial application instrument D50 offers an addition to the ILL instrument suite (see p. 27 in this issue). With the commissioning of the new spin echo spectrometer WASP in 2016, the H5 program will be completed and a considerable improvement for the ILL instrument park will be finalized.
Resumo:
El magnesio y sus aleaciones representan un interesante campo de investigación dentro de la ingeniería de materiales debido a los retos que plantean tanto su conformabilidad como durabilidad. Las características físicas y mecánicas del magnesio y sus aleaciones los convierten en materiales de gran interés desde el punto de vista industrial al tratarse de uno de los materiales más abundantes y ligeros en un mundo en el que día a día los recursos y materias primas son más escasos por lo que el acceso a materiales abundantes y ligeros que permitan economizar el uso de energía cobrará mayor importancia en el futuro. En la coyuntura actual es por tanto necesario revisar procesos y procedimientos, investigando y tratando de ampliar desde este punto de vista si es posible mejorar los procedimientos de fabricación de los materiales disponibles actualmente o el desarrollo de nuevos, mejores que los anteriores, que permitan ayudar a la sostenibilidad del planeta. El magnesio, pese a ser un material muy abundante y relativamente barato, presenta una serie de inconvenientes que limitan de manera muy seria su aplicación industrial, su alta reactividad en presencia de oxígeno y su mal comportamiento frente a la corrosión así como limitaciones en su conformabilidad han estado limitando su uso y aplicaciones, los investigaciones dentro del campo de la metalurgia física de este material y el desarrollo de nuevas aleaciones han permitido su empleo en múltiples aplicaciones dentro de la industria aeroespacial, militar, automovilística, electrónica, deportiva y médica. La motivación para esta tesis doctoral ha sido tratar de aportar más luz sobre el comportamiento de una de las aleaciones comerciales base magnesio más empleadas, la AZ31B, tratando de modelizar como le afectan los procesos de soldadura y estudiando desde un punto de vista experimental como se ve modificada su microestructura, su comportamiento mecánico y su resistencia frente a la corrosión. Aunque en un principio se pensó en el empleo de métodos electroquímicos para el estudio de la corrosión de estos materiales, rápidamente se decidió prescindir de su uso dada la dificultad observada tanto durante los trabajos de investigación de esta Tesis como los encontrados por otros investigadores. Mediante microdurezas se han caracterizado mecánicamente las soldaduras de aleación de magnesio tipo AZ31 en función de diferentes materiales de aporte, observándose que el empleo de las aleaciones con mayor contenido de aluminio y zinc no contribuye a una mejora significativa de las propiedades mecánicas. Se han podido establecer correlaciones entre los modelos de simulación desarrollados y las microestructuras resultantes de los procesos reales de soldadura que permiten definir a priori que estructuras se van a obtener. De igual forma ha sido posible completar un estudio micrográfico y químico completo de las diferentes fases y microconstituyentes originados durante los procesos de soldadura, gracias a estos resultados se ha propuesto como hipótesis una explicación que justifica el comportamiento frente a la corrosión de estas aleaciones una vez soldadas. Los ensayos de corrosión realizados han permitido determinar correlaciones matemáticas que indican las velocidades de corrosión esperables de este tipo de aleaciones. Desde el punto de vista del diseño, los resultados obtenidos en este trabajo permitirán a otros investigadores y diseñadores tomar decisiones a la hora de decidir qué materiales de aporte emplear junto con las implicaciones que conllevan desde el punto de vista metalúrgico, mecánico o corrosivo las diferentes alternativas. Por último indicar que gracias al trabajo desarrollado se han definido modelos matemáticos para predecir el comportamiento frente a la corrosión de estas aleaciones, se han determinado las posibles causas y mecanismos por las que se gobierna la corrosión en la soldadura de chapas de aleación AZ31B y los motivos por los que se debe considerar el empleo de un material de aporte u otro. Los modelos de simulación desarrollados también han ayudado a comprender mejor la microestructura resultante de los procesos de soldadura y se han determinado que fases y microconstituyentes están presentes en las soldaduras de estas aleaciones. ABSTRACT Magnesium and its alloys represent and interesting research field in the material science due to the challenges of their fabrication and durability. The physical and mechanical properties of magnesium and its alloys make them a very interesting materials from and industrial point of view being one of the most abundant and lightest materials in a world in which day by day the lacking of resources and raw materials is more important, the use of light materials which allow to save energy will become more important in a near future. So that it is necessary to review processes and procedures, investigating and trying to improve current fabrication procedures and developing new ones, better than the former ones, in order to help with the sustainability of the planet. Although magnesium is a very common and relatively cheap material, it shows some inconveniences which limit in a major way their industrial application; its high reactivity in presence of oxygen, its poor corrosion resistance and some manufacturing problems had been limiting their use and applications, metallurgical investigations about this material and the development of new alloys have allowed its use in multiple applications in the aerospacial, military, automobile, electronics, sports and medical industry. The motivation for this thesis has been trying to clarify the behavior of one most used commercial base magnesium alloys, the AZ31, trying to modeling how its affected by thermal cycles of the welding process and studying from an experimental point of view how its microstructure is modified and how these modifications affect its mechanical behavior and corrosion resistance. Although at the beginning of this works it was though about the using of electrochemical techniques to evaluate the corrosion of these materials, rapidly it was decided not to use them because of the difficulty observed by during this research and by other investigators. The results obtained in this thesis have allowed to characterize mechanically AZ31 magnesium welding alloys considering different filler metals, according to this study using filler metals with a high content of aluminum and zinc does not represent an important improve It has been possible to establish correlations between simulation models and the resultant microstructures of the real melting processes originated during welding processes which allow to predict the structures which will be obtained after the welding. In addition to that it is possible to complete a complete micrographic and chemical analysis of the different phases and microconstituents created during welding, due to these results and hypothesis to explain the corrosion behavior of these welded alloys. Corrosion tests carried out have allowed defining mathematical correlations to predict corrosion rates of this kind of alloys. From a designing point of view, the results obtained in this work will let other investigators and designers to make decisions taking into account which implications have the different options from a metallurgical, mechanic and corrosive point of view. Finally we would like to indicate that thanks to this work it has been possible to define mathematical models to predict the corrosion behavior, the causes and the mechanism of this corrosion in the AZ31 welding sheets have been also determined and the reasons for using of one filler metal or another, the developed simulation models have also help to get a better understanding of the result microstructure determining the phases and the microconstituents present in the welding of this alloys.
Resumo:
Dielectric barrier discharge (DBD) air plasma is a novel technique for in-package decontamination of food, but it has not been yet applied to the packaging material. Characterization of commercial polylactic acid (PLA) films was done after in-package DBD plasma treatment at different voltages and treatment times to evaluate its suitability as food packaging material. DBD plasma increased the roughness of PLA film mainly at the site in contact with high voltage electrode at both the voltage levels of 70 and 80 kV. DBD plasma treatments did not induce any change in the glass transition temperature, but significant increase in the initial degradation temperature and maximum degradation temperature was observed. DBD plasma treatment did not adversely affect the oxygen and water vapor permeability of PLA. A very limited overall migration was observed in different food simulants and was much below the regulatory limits. Industrial relevance: In-package DBD plasma is a novel and innovative approach for the decontamination of foods with potential industrial application. This paper assesses the suitability of PLA as food packaging material for cold plasma treatment. It characterizes the effect of DBD plasma on the packaging material when used for in-package decontamination of food. The work described in this research offers a promising alternative to classical methods used in fruit and vegetable industries where in-package DBD plasma can serve as an effective decontamination process and avoids any post-process recontamination or hazards from the package itself.
Resumo:
A system for the NDI' testing of the integrity of conposite materials and of adhesive bonds has been developed to meet industrial requirements. The vibration techniques used were found to be applicable to the development of fluid measuring transducers. The vibrational spectra of thin rectangular bars were used for the NDT work. A machined cut in a bar had a significant effect on the spectrum but a genuine crack gave an unambiguous response at high amplitudes. This was the generation of fretting crack noise at frequencies far above that of the drive. A specially designed vibrational decrement meter which, in effect, measures mechanical energy loss enabled a numerical classification of material adhesion to be obtained. This was used to study bars which had been flame or plasma sprayed with a variety of materials. It has become a useful tool in optimising coating methods. A direct industrial application was to classify piston rings of high performance I.C. engines. Each consists of a cast iron ring with a channel into which molybdenum, a good bearing surface, is sprayed. The NDT classification agreed quite well with the destructive test normally used. The techniques and equipment used for the NOT work were applied to the development of the tuning fork transducers investigated by Hassan into commercial density and viscosity devices. Using narrowly spaced, large area tines a thin lamina of fluid is trapped between them. It stores a large fraction of the vibrational energy which, acting as an inertia load reduces the frequency. Magnetostrictive and piezoelectric effects together or in combination enable the fork to be operated through a flange. This allows it to be used in pipeline or 'dipstick' applications. Using a different tine geometry the viscosity loading can be predoninant. This as well as the signal decrement of the density transducer makes a practical viscometer.
Resumo:
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether (DME) gas adsorptive separation and steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). Hydrogen is currently receiving increasing interest as an alternative source of clean energy and has high potential applications, including the transportation sector and power generation. Computational fluid dynamic (CFD) modelling has attracted considerable recognition in the engineering sector consequently leading to using it as a tool for process design and optimisation in many industrial processes. In most cases, these processes are difficult or expensive to conduct in lab scale experiments. The CFD provides a cost effective methodology to gain detailed information up to the microscopic level. The main objectives in this project are to: (i) develop a predictive model using ANSYS FLUENT (CFD) commercial code to simulate the flow hydrodynamics, mass transfer, reactions and heat transfer in a large scale dual fluidized bed system for combined gas separation and steam reforming processes (ii) implement a suitable adsorption models in the CFD code, through a user defined function, to predict selective separation of a gas from a mixture (iii) develop a model for dimethyl ether steam reforming (DME-SR) to predict hydrogen production (iv) carry out detailed parametric analysis in order to establish ideal operating conditions for future industrial application. The project has originated from a real industrial case problem in collaboration with the industrial partner Dow Corning (UK) and jointly funded by the Engineering and Physical Research Council (UK) and Dow Corning. The research examined gas separation by adsorption in a bubbling bed, as part of a dual fluidized bed system. The adsorption process was simulated based on the kinetics derived from the experimental data produced as part of a separate PhD project completed under the same fund. The kinetic model was incorporated in FLUENT CFD tool as a pseudo-first order rate equation; some of the parameters for the pseudo-first order kinetics were obtained using MATLAB. The modelling of the DME adsorption in the designed bubbling bed was performed for the first time in this project and highlights the novelty in the investigations. The simulation results were analysed to provide understanding of the flow hydrodynamic, reactor design and optimum operating condition for efficient separation. Bubbling bed validation by estimation of bed expansion and the solid and gas distribution from simulation agreed well with trends seen in the literatures. Parametric analysis on the adsorption process demonstrated that increasing fluidizing velocity reduced adsorption of DME. This is as a result of reduction in the gas residence time which appears to have much effect compared to the solid residence time. The removal efficiency of DME from the bed was found to be more than 88%. Simulation of the DME-SR in FLUENT CFD was conducted using selected kinetics from literature and implemented in the model using an in-house developed user defined function. The validation of the kinetics was achieved by simulating a case to replicate an experimental study of a laboratory scale bubbling bed by Vicente et al [1]. Good agreement was achieved for the validation of the models, which was then applied in the DME-SR in the large scale riser section of the dual fluidized bed system. This is the first study to use the selected DME-SR kinetics in a circulating fluidized bed (CFB) system and for the geometry size proposed for the project. As a result, the simulation produced the first detailed data on the spatial variation and final gas product in such an industrial scale fluidized bed system. The simulation results provided insight in the flow hydrodynamic, reactor design and optimum operating condition. The solid and gas distribution in the CFB was observed to show good agreement with literatures. The parametric analysis showed that the increase in temperature and steam to DME molar ratio increased the production of hydrogen due to the increased DME conversions, whereas the increase in the space velocity has been found to have an adverse effect. Increasing temperature between 200 oC to 350 oC increased DME conversion from 47% to 99% while hydrogen yield increased substantially from 11% to 100%. The CO2 selectivity decreased from 100% to 91% due to the water gas shift reaction favouring CO at higher temperatures. The higher conversions observed as the temperature increased was reflected on the quantity of unreacted DME and methanol concentrations in the product gas, where both decreased to very low values of 0.27 mol% and 0.46 mol% respectively at 350 °C. Increasing the steam to DME molar ratio from 4 to 7.68 increased the DME conversion from 69% to 87%, while the hydrogen yield increased from 40% to 59%. The CO2 selectivity decreased from 100% to 97%. The decrease in the space velocity from 37104 ml/g/h to 15394 ml/g/h increased the DME conversion from 87% to 100% while increasing the hydrogen yield from 59% to 87%. The parametric analysis suggests an operating condition for maximum hydrogen yield is in the region of 300 oC temperatures and Steam/DME molar ratio of 5. The analysis of the industrial sponsor’s case for the given flow and composition of the gas to be treated suggests that 88% of DME can be adsorbed from the bubbling and consequently producing 224.4t/y of hydrogen in the riser section of the dual fluidized bed system. The process also produces 1458.4t/y of CO2 and 127.9t/y of CO as part of the product gas. The developed models and parametric analysis carried out in this study provided essential guideline for future design of DME-SR at industrial level and in particular this work has been of tremendous importance for the industrial collaborator in order to draw conclusions and plan for future potential implementation of the process at an industrial scale.
Resumo:
Biodiesel production is a very promising area due to the relevance that it is an environmental-friendly diesel fuel alternative to fossil fuel derived diesel fuels. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst can solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation, which has been done for biodiesel production process for the first time. This multi-disciplinary research combining chemistry, chemical engineering and process integration offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.
Resumo:
Biodiesel production is a very promising area due to the relevance that it is an environmental-friendly diesel fuel alternative to fossil fuel derived diesel fuels. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst can solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation, which has been done for biodiesel production process for the first time. This multi-disciplinary research combining chemistry, chemical engineering and process integration offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.
Resumo:
Two types of health reforms in Latin America are analysed: one based on insurance and service commodification and the one referred to the unified public systems of progressive governments. Health insurance with explicit service packages has not fulfilled their purposes of universal coverage, equal access to necessary health services and improvement of health conditions but has opened health as a field of profit making for insurance companies and private health providers. The national health services as a state obligation have developed territorialized health services and widened substantially timely access to the majority of the population. The adoption of an integrated and wide social policy has an impact on population well fare. It faces some problems derived from the old health systems and the power of the insurance and medical complex.
Resumo:
In the mid-1980s, the magazine Projeto published the Actual Brazilian Architecture catalogue presenting texts by Hugo Segawa and Ruth Verde Zein with a corpus of works and engaged architects of the 1960s and 1970s. To comprehend the Brazilian architectural production post-1964, in those years of the 1980s, became a significant mission to reactivate the Brazilian architectural debate weakened by the military dictatorship. In his doctoral thesis Spadoni (2003) deals with the different ways which characterizes the Brazilian architectural production of the 1970s. Marked by inventiveness, this production was in tune with the modern thinking and in the transition period between the 1970s and the 1980s it synchronized with the international debate about post-modern architecture. Considering Spadoni s doctoral thesis, this work deals with the modern experience observed in the one-family-houses built in the seventies in João Pessoa. Some modern experiences were not clear outside, to observe it, it was necessary to search for the type of experience into the spatial disposition and of the know-how constructive, because into the appearance some houses not make explicit the use of the modern language. Other observed experiences allude to the repertoire of the Brazilian period in the years 1940s-1960s, to the experience of the modern architecture in São Paulo of the 1960s, to the experiences in which the climate of the Northeastern region strongly influenced the architectural conception. We can also find in a reduced number of houses a particular experience: it refers to experiences that expose the constructive doing, which leave the material apparent and apply to the residential type the experience of the industrial pre-fabricated buildings
Resumo:
This work aims to analyze and evaluate the Urban furniture designed to public areas according to the Revitalization planning for Rio Grande do Norte coastland, defining visual relations among urban elements in the landscape of revitalized public urban areas with cultural, paisagistic and touristic values and the design process used for developing urban furniture to those areas, observing the incoming consequences use to that process in a specific urban context which alters use, functions, cultural images as well as social values attributed to each particular place. Environmental perceptions, legibility of local cultural references and their representation through the design of urban elements, act in a positive or negative manner over the inhabitants cognition process of some particular revitalized area, determining new use and attributions to those areas. Designs for coastal urban interventions try excessively to standardize technical media, construction materials and planning configurations, creating artificial sceneries that segregates users, imposing new structures and usage, generating, consequently, the so called non-places and burlesque regionalism. The research is divided into 4 chapters: 1) Theoretical support (Industrial design; Urban furniture; Public urban spaces; Urban image and environmental perception; Urban occupation and interventions in coastland areas); 2) Methodological procedures and data collection; 3) Analysis of Rio Grande do Norte coastal areas and their urban interventions; 4) Final considerations and Industrial Design contributions to the subject
The whole-cell immobilization of D-hydantoinase-engineered Escherichia coli for D-CpHPG biosynthesis
Resumo:
Background: D-Hydroxyphenylglycine is considered to be an important chiral molecular building-block of antibiotic reagents such as pesticides, and β-lactam antibiotics. The process of its production is catalyzed by D-hydantoinase and D-carbamoylase in a two-step enzyme reaction. How to enhance the catalytic potential of the two enzymes is valuable for industrial application. In this investigation, an Escherichia coli strain genetically engineered with D-hydantoinase was immobilized by calcium alginate with certain adjuncts to evaluate the optimal condition for the biosynthesis of D-carbamoyl-p-hydroxyphenylglycine (D-CpHPG), the compound further be converted to D-hydroxyphenylglycine (D-HPG) by carbamoylase. Result: The optimal medium to produce D-CpHPG by whole-cell immobilization was a modified Luria-Bertani (LB) added with 3.0% (W/V) alginate, 1.5% (W/V) diatomite, 0.05% (W/V) CaCl2 and 1.00 mM MnCl2. The optimized diameter of immobilized beads for the whole-cell biosynthesis here was 2.60 mm. The maximized production rates of D-CpHPG were up to 76%, and the immobilized beads could be reused for 12 batches. Conclusions: This investigation not only provides an effective procedure for biological production of D-CpHPG, but gives an insight into the whole-cell immobilization technology. © 2016 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
Resumo:
As metas da União Europeia para 2020 em termos de biocombustíveis e biolíquidos traduziram-se, na última década, num destaque da indústria de biodiesel em Portugal. Inerente ao processo de produção biodiesel está um subproduto, o glicerol bruto, cujo estudo tem vindo a ser alvo de interesse na comunidade científica. O objetivo principal deste trabalho consistiu no estudo da gasificação do glicerol técnico e do glicerol bruto, usando vapor como agente oxidante. Pretendeu-se avaliar a composição do gás de produção obtido e os parâmetros de gasificação, como a percentagem de conversão de carbono e de hidrogénio, o rendimento de gás seco, a eficiência de gás frio e o poder calorífico do gás produzido. No estudo da gasificação do glicerol técnico avaliou-se o efeito da temperatura na performance do processo, entre 750 – 1000 ºC, e estudou-se ainda o efeito do caudal de alimentação ao reator (3,8 mL/min, 6,5 mL/min e 10,0 mL/min). Para o caudal mais baixo, estudou-se o efeito da razão de mistura glicerol/água (25/75, 40/60, 60/40 e 75/25) e para a razão de mistura 60/40 foi avaliada a influência da adição de ar como agente gasificante. O estudo da gasificação do glicerol bruto foi feito realizando ensaios de gasificação numa gama de temperaturas de 750 ºC a 1000 ºC, para uma razão de mistura glicerol/água (60/40) com o caudal de 3,8 mL/min e usando apenas vapor de água como agente de gasificação. Os ensaios foram realizados num reator de leito fixo de 500 mm de comprimento e 90 mm de diâmetro interno, composto por um leito de alumina com partículas de 5 mm de diâmetro. O aquecimento foi realizado com um forno elétrico de 4 kW. A amostra de gás de produção recolhida foi analisada por cromatografia gasosa com detector de termocondutividade. Os resultados obtidos na gasificação do glicerol técnico, revelaram que a temperatura é uma variável preponderante no desempenho do processo de gasificação. À exceção do poder calorífico superior, para o qual se obteve uma ligeira diminuição de valores com o aumento da temperatura, os valores mais elevados dos parâmetros de gasificação foram obtidos para temperaturas superiores a 900 ºC. Esta temperatura parece ser determinante no modelo cinético de gasificação do glicerol, condicionando a composição do gás de produção obtido. Concluiu-se ainda que, na gama de caudais testada, o caudal de alimentação ao reator não teve influência no processo de gasificação. Os ensaios realizados para avaliar o efeito da razão de mistura permitiram verificar que, o aumento da adição de água à alimentação se traduz na redução do teor de CO e de CH4 e no aumento do teor de H2 e CO2, no gás de produção. Para a razão de mistura 25/75 foram obtidos valores de 1,3 para o rácio H2/CO para temperaturas superiores a 900 ºC. A influência da adição de água tornou-se mais evidente nos ensaios de gasificação realizados a temperaturas superiores a 900 ºC. Verificou-se um aumento da conversão de carbono, do rendimento de gás seco e da eficiência do gás frio e uma ligeira diminuição do poder calorífico e da potência disponível, no gás de produção. Para as razões de misturas 60/40 e 40/60 obtiveram-se resultados, para os parâmetros de gasificação, da mesma ordem de grandeza e com valores intermédios entre os obtidos para as razões de mistura 25/75 e 75/25. Porém, quanto maior o teor de água alimentado maior o consumo de energia associado à vaporização da água. Assim, o aumento do teor de água na mistura só apresentará interesse industrial se o objetivo passar pela produção de hidrogénio. Quanto ao efeito da adição de ar como agente de gasificação, os resultados obtidos dão indicação que se poderão potenciar algumas reações exotérmicas que contribuirão para a redução do consumo energético global do processo. Por outro lado, o gás de produção apresentou um rácio H2/CO interessante do ponto de vista da sua aplicação industrial, superior em 35 % ao verificado para a gasificação efetuada apenas na presença de vapor. À exceção do decréscimo no valor do poder calorífico superior do gás de produção, os restantes parâmetros estudados apresentaram a mesma ordem de grandeza, dos obtidos para o estudo da mesma razão de mistura na ausência de ar. Relativamente ao estudo da gasificação do glicerol bruto, obtiveram-se valores de rácio H2/CO e eficiência de gás frio mais elevados que os valores obtidos para a mesma razão de mistura usando glicerol técnico. Os demais parâmetros de gasificação avaliados mostraram-se semelhantes entre as duas matérias-primas, verificando-se apenas uma ligeira diminuição no valor do poder calorífico superior do gás produzido com glicerol bruto. Os resultados obtidos demonstram a possibilidade de valorização energética do glicerol bruto resultante da produção de biodiesel.
Resumo:
Brazil is a great ceramic raw materials productor because of the its big number of clay deposits, in various areas of the ceramic industry. Although, the majority of the natural reservations are unknown or not studied yet, so there is no scientific technical dates that can guide their usage and industrial application, as well as the racional and optimazed way of usage by the industrial sector. The state of Maranhão has a gigant mineral wealth as esmectite, bentonite, kaolin, clays, feldspates, marine salt, iron and others, but produce only products with small agregated value compared to the porcelanato, one of the most expensives ceramic cover tiles, the reason for that is the low water absorption (lower than 0,5%), beside present amazing tecnicals features, like mechanical resistence. The main objective of the work is to do the characterization of four clays, with the finallity of find an application by the results and develop formulations to produce porcelanato using these raw materials from Timon-MA. For this were made the raw materials characterization using X ray fluorecence; X ray diffraction; Differencial thermal analysis; Dilatometric analysis and Tecnological properties, planing three formulations that were sinterized at six different temperatures: 1150, 1170, 1190, 1210, 1230 and 1250ºC for 7 minutes. After the sinteratization, the samples were submitted to tension resistance analysis. Were attained two formulations with the requested properties to produce porcelanato
Resumo:
Metal powder sintering appears to be promising option to achieve new physical and mechanical properties combining raw material with new processing improvements. It interest over many years and continue to gain wide industrial application. Stainless steel is a widely accepted material because high corrosion resistance. However stainless steels have poor sinterability and poor wear resistance due to their low hardness. Metal matrix composite (MMC) combining soft metallic matrix reinforced with carbides or oxides has attracted considerable attention for researchers to improve density and hardness in the bulk material. This thesis focuses on processing 316L stainless steel by addition of 3% wt niobium carbide to control grain growth and improve densification and hardness. The starting powder were water atomized stainless steel manufactured for Höganäs (D 50 = 95.0 μm) and NbC produced in the UFRN and supplied by Aesar Alpha Johnson Matthey Company with medium crystallite size 16.39 nm and 80.35 nm respectively. Samples with addition up to 3% of each NbC were mixed and mechanically milled by 3 routes. The route1 (R1) milled in planetary by 2 hours. The routes 2 (R2) and 3 (R3) milled in a conventional mill by 24 and 48 hours. Each milled samples and pure sample were cold compacted uniaxially in a cylindrical steel die (Ø 5 .0 mm) at 700 MPa, carried out in a vacuum furnace, heated at 1290°C, heating rate 20°C stand by 30 and 60 minutes. The samples containing NbC present higher densities and hardness than those without reinforcement. The results show that nanosized NbC particles precipitate on grain boundary. Thus, promote densification eliminating pores, control grain growth and increase the hardness values
Resumo:
In the mid-1980s, the magazine Projeto published the Actual Brazilian Architecture catalogue presenting texts by Hugo Segawa and Ruth Verde Zein with a corpus of works and engaged architects of the 1960s and 1970s. To comprehend the Brazilian architectural production post-1964, in those years of the 1980s, became a significant mission to reactivate the Brazilian architectural debate weakened by the military dictatorship. In his doctoral thesis Spadoni (2003) deals with the different ways which characterizes the Brazilian architectural production of the 1970s. Marked by inventiveness, this production was in tune with the modern thinking and in the transition period between the 1970s and the 1980s it synchronized with the international debate about post-modern architecture. Considering Spadoni s doctoral thesis, this work deals with the modern experience observed in the one-family-houses built in the seventies in João Pessoa. Some modern experiences were not clear outside, to observe it, it was necessary to search for the type of experience into the spatial disposition and of the know-how constructive, because into the appearance some houses not make explicit the use of the modern language. Other observed experiences allude to the repertoire of the Brazilian period in the years 1940s-1960s, to the experience of the modern architecture in São Paulo of the 1960s, to the experiences in which the climate of the Northeastern region strongly influenced the architectural conception. We can also find in a reduced number of houses a particular experience: it refers to experiences that expose the constructive doing, which leave the material apparent and apply to the residential type the experience of the industrial pre-fabricated buildings