984 resultados para indirizzo :: 096 :: Generale
Resumo:
Analizzeremo dati di metilazione di diversi gruppi di pazienti, mettendoli in relazione con le loro età, intesa in senso anagrafico e biologico. Adatteremo metodi di regressione che sono già stati usati in altri studi, in particolare di tipo statistico, cercando di migliorarli e proveremo ad applicare a questi dati anche dei metodi nuovi, non solo di tipo statistico. La nostra analisi vuole essere innovativa soprattutto perché, oltre a guardare i dati in maniera locale attraverso lo studio della metilazione di particolari sequenze genetiche più o meno note per essere collegate all’invecchiamento, andremo a considerare i dati anche in maniera globale, analizzando le proprietà della distribuzione di tutti i valori di metilazione di un paziente attraverso la trasformata di Fourier.
Resumo:
Questa tesi è incentrata sull'analisi dell'arbitraggio statistico, strategia di trading che cerca di trarre profitto dalle fluttuazioni statistiche di prezzo di uno o più asset sulla base del loro valore atteso. In generale, si creano opportunità di arbitraggio statistico quando si riescono ad individuare delle componenti sistematiche nelle dinamiche dei prezzi di alcuni asset che si muovono con regolarità persistenti e prevalenti. Perturbazioni casuali della domanda e dell’offerta nei mercati possono causare divergenze nei prezzi, dando luogo a opportunità di intermarket spread, ossia simultanei acquisto e vendita di commodities correlate tra loro. Vengono approfonditi vari test econometrici, i test unit root utilizzati per verificare se una serie storica possa essere modellizzata con un processo random walk. Infine viene costruita una strategia di trading basata sull'arbitraggio statistico e applicata numericamente alle serie storiche dal 2010 al 2014 di due titoli azionari sul petrolio: Brent e WTI.
Resumo:
Our goal in this thesis is to provide a result of existence of the degenerate non-linear, non-divergence PDE which describes the mean curvature flow in the Lie group SE(2) equipped with a sub-Riemannian metric. The research is motivated by problems of visual completion and models of the visual cortex.
Resumo:
Il presente lavoro è motivato dal problema della constituzione di unità percettive a livello della corteccia visiva primaria V1. Si studia dettagliatamente il modello geometrico di Citti-Sarti con particolare attenzione alla modellazione di fenomeni di associazione visiva. Viene studiato nel dettaglio un modello di connettività. Il contributo originale risiede nell'adattamento del metodo delle diffusion maps, recentemente introdotto da Coifman e Lafon, alla geometria subriemanniana della corteccia visiva. Vengono utilizzati strumenti di teoria del potenziale, teoria spettrale, analisi armonica in gruppi di Lie per l'approssimazione delle autofunzioni dell'operatore del calore sul gruppo dei moti rigidi del piano. Le autofunzioni sono utilizzate per l'estrazione di unità percettive nello stimolo visivo. Sono presentate prove sperimentali e originali delle capacità performanti del metodo.
Resumo:
General Relativity is one of the greatest scientific achievementes of the 20th century along with quantum theory. These two theories are extremely beautiful and they are well verified by experiments, but they are apparently incompatible. Hints towards understanding these problems can be derived studying Black Holes, some the most puzzling solutions of General Relativity. The main topic of this Master Thesis is the study of Black Holes, in particular the Physics of Hawking Radiation. After a short review of General Relativity, I study in detail the Schwarzschild solution with particular emphasis on the coordinates systems used and the mathematical proof of the classical laws of Black Hole "Thermodynamics". Then I introduce the theory of Quantum Fields in Curved Spacetime, from Bogolubov transformations to the Schwinger-De Witt expansion, useful for the renormalization of the stress energy tensor. After that I introduce a 2D model of gravitational collapse to study the Hawking radiation phenomenon. Particular emphasis is given to the analysis of the quantum states, from correlations to the physical implication of this quantum effect (e.g. Information Paradox, Black Hole Thermodynamics). Then I introduce the renormalized stress energy tensor. Using the Schwinger-De Witt expansion I renormalize this object and I compute it analytically in the various quantum states of interest. Moreover, I study the correlations between these objects. They are interesting because they are linked to the Hawking radiation experimental search in acoustic Black Hole models. In particular I find that there is a characteristic peak in correlations between points inside and outside the Black Hole region, which correpsonds to entangled excitations inside and outside the Black Hole. These peaks hopefully will be measurable soon in supersonic BEC.
Resumo:
In recent years is becoming increasingly important to handle credit risk. Credit risk is the risk associated with the possibility of bankruptcy. More precisely, if a derivative provides for a payment at cert time T but before that time the counterparty defaults, at maturity the payment cannot be effectively performed, so the owner of the contract loses it entirely or a part of it. It means that the payoff of the derivative, and consequently its price, depends on the underlying of the basic derivative and on the risk of bankruptcy of the counterparty. To value and to hedge credit risk in a consistent way, one needs to develop a quantitative model. We have studied analytical approximation formulas and numerical methods such as Monte Carlo method in order to calculate the price of a bond. We have illustrated how to obtain fast and accurate pricing approximations by expanding the drift and diffusion as a Taylor series and we have compared the second and third order approximation of the Bond and Call price with an accurate Monte Carlo simulation. We have analysed JDCEV model with constant or stochastic interest rate. We have provided numerical examples that illustrate the effectiveness and versatility of our methods. We have used Wolfram Mathematica and Matlab.
Resumo:
L’oggetto dell'elaborato riguarda l’insegnamento attuale dell’analisi matematica nella scuola secondaria superiore. Si sono esaminate le difficoltà incontrate dagli studenti ed elaborate riflessioni di carattere didattico per operare un insegnamento efficace. Nel primo capitolo sono state messe a punto alcune riflessioni sui fini dell’educazione. Il secondo capitolo si è concentrato sulle difficoltà legate all'insegnamento dell’analisi matematica, esaminando diverse situazioni didattiche verificatesi nel corso del tirocinio svolto nei mesi di Ottobre e Novembre 2013 presso l'Istituto Tecnico Tecnologico di Cesena. Il terzo capitolo opera un confronto fra i diversi approcci all'insegnamento della matematica in generale e dell'analisi in particolare che si presentano nelle diverse scuole secondarie, in particolare nei Licei e negli Istituti Tecnici. Nel quarto capitolo ci si è occupati del livello scolastico successivo, analizzando le differenze che intercorrono tra la scuola secondaria superiore e l’università per quanto riguarda gli stadi dello sviluppo mentale degli studenti, le materie, i metodi di studio e gli obiettivi di apprendimento.
Resumo:
Nell'ambito delle nanostrutture, un ruolo primario è svolto dai punti quantici. In questo lavoro siamo interessati all'analisi teorica del processo di creazione dei punti quantici: esso può avvenire per eteroepitassia, in particolare secondo il metodo studiato da Stranski-Krastanov. Un film di Germanio viene depositato su un substrato di Silicio in modo coerente, cioè senza dislocazioni, e, a causa del misfit tra le maglie dei due materiali, c'è un accumulo di energia elastica nel film. A una certa altezza critica questa energia del film può essere ridotta se il film si organizza in isole (punti quantici), dove la tensione può essere rilassata lateralmente. L'altezza critica dipende dai moduli di Young (E, υ), dal misfit tra le maglie (m) e dalla tensione superficiali (γ). Il trasporto di materiale nel film è portato avanti per diffusione superficiale. Il punto focale nell'analisi delle instabilità indotte dal misfit tra le maglie dei materiali è la ricerca delle caratteristiche che individuano il modo di crescita più rapido dei punti quantici. In questo lavoro siamo interessati ad un caso particolare: la crescita di punti quantici non su una superficie piana ma sulla superficie di un nanofilo quantico a geometria cilindrica. L'analisi delle instabilità viene condotta risolvendo le equazioni all'equilibrio: a tal fine sono state calcolate le distribuzioni del tensore delle deformazioni e degli sforzo di un nanofilo core-shell con una superficie perturbata al primo ordine rispetto all'ampiezza della perturbazione. L'analisi è stata condotta con particolari condizioni al contorno ed ipotesi geometriche, e diverse scelte dello stato di riferimento del campo degli spostamenti. Risolto il problema elastico, è stata studiata l'equazione dinamica di evoluzione descrivente la diffusione di superficie. Il risultato dell'analisi di instabilità è il tasso di crescita in funzione del numero d'onda q, con diversi valori del raggio del core, spessore dello shell e modo normale n, al fine di trovare il più veloce modo di crescita della perturbazione.
Resumo:
I modelli su reticolo con simmetrie SU(n) sono attualmente oggetto di studio sia dal punto di vista sperimentale, sia dal punto di vista teorico; particolare impulso alla ricerca in questo campo è stato dato dai recenti sviluppi in campo sperimentale per quanto riguarda la tecnica dell’intrappolamento di atomi ultrafreddi in un reticolo ottico. In questa tesi viene studiata, sia con tecniche analitiche sia con simulazioni numeriche, la generalizzazione del modello di Heisenberg su reticolo monodimensionale a simmetria SU(3). In particolare, viene proposto un mapping tra il modello di Heisenberg SU(3) e l’Hamiltoniana con simmetria SU(2) bilineare-biquadratica con spin 1. Vengono inoltre presentati nuovi risultati numerici ottenuti con l’algoritmo DMRG che confermano le previsioni teoriche in letteratura sul modello in esame. Infine è proposto un approccio per la formulazione della funzione di partizione dell’Hamiltoniana bilineare-biquadratica a spin-1 servendosi degli stati coerenti per SU(3).
Resumo:
Capire come ottenere l'informazione accessibile, cioè quanta informazione classica si può estrarre da un processo quantistico, è una delle questioni più intricate e affascinanti nell'ambito della teoria dell'informazione quantistica. Nonostante l'importanza della nozione di informazione accessibile non esistono metodi generali per poterla calcolare, esistono soltanto dei limiti, i più famosi dei quali sono il limite superiore di Holevo e il limite inferiore di Josza-Robb-Wootters. La seguente tesi fa riferimento a un processo che coinvolge due parti, Alice e Bob, che condividono due qubits. Si considera il caso in cui Bob effettua misure binarie sul suo qubit e quindi indirizza lo stato del qubit di Alice in due possibili stati. L'obiettivo di Alice è effettuare la misura ottimale nell'ottica di decretare in quale dei due stati si trova il suo qubit. Lo strumento scelto per studiare questo processo va sotto il nome di 'quantum steering ellipsoids formalism'. Esso afferma che lo stato di un sistema di due qubit può essere descritto dai vettori di Bloch di Alice e Bob e da un ellissoide nella sfera di Bloch di Alice generato da tutte le possibili misure di Bob. Tra tutti gli stati descritti da ellissoidi ce ne sono alcuni che manifestano particolari proprietà, per esempio gli stati di massimo volume. Considerando stati di massimo volume e misure binarie si è riuscito a trovare un limite inferiore all'informazione accessibile per un sistema di due qubit migliore del limite inferiore di Josza-Robb-Wootters. Un altro risultato notevole e inaspettato è che l'intuitiva e giustificata relazione 'distanza tra i punti nell'ellissoide - mutua informazione' non vale quando si confrontano coppie di punti ''vicine'' tra loro e lontane dai più distanti.
Resumo:
La tesi propone alcuni esempi di link fibrati in spazi lenticolari. Sfruttando la compatibilità fra le mosse di chirurgia intera e la nozione di open book decomposition, si ricava un esempio di link fibrato prima in L(p,1), per poi generalizzarlo a L(p,q). Si conclude determinando una struttura di contatto equivalente alla open book relativa agli spazi del tipo L(p,1).
Resumo:
I cicli di Hodge assoluti sono stati utilizzati da Deligne per dividere la congettura di Hodge in due sotto-congetture. La prima dice che tutte le classi di Hodge su una varietà complessa proiettiva liscia sono assolute, la seconda che le classi assolute sono algebriche. Deligne ha dato risposta affermativa alla prima sottocongettura nel caso delle varietà abeliane. La dimostrazione si basa su due teoremi, conosciuti rispettivamente come Principio A e Principio B. In questo lavoro vengono presentate la teoria delle classi di Hodge assolute e la dimostrazione del Principio B.
Resumo:
La classificazione delle algebre di Lie semplici di dimensione finita su un campo algebricamente chiuso si divide in due parti: le algebre di Lie classiche e quelle eccezionali. La differenza principale è che le algebre di Lie classiche vengono introdotte come algebre di matrici, quelle eccezionali invece non si presentano come algebre di matrici ma un modo di introdurle è attraverso il loro diagramma di Dynkin. Lo scopo della tesi è di realizzare l' algebra di Lie eccezionale di tipo G_2 come algebra di matrici. Per raggiungere tale scopo viene introdotta un' algebra di composizione: la cosiddetta algebra degli ottonioni. Quest'ultima viene costruita in due modi diversi: come spazio vettoriale sui reali con un prodotto bilineare e come insieme delle coppie ordinate di quaternioni. Il resto della tesi è dedicato all' algebra delle derivazioni degli ottonioni. Viene dimostrato che questa è un' algebra di Lie semisemplice di dimensione 14. Infine, considerando la complessificazione dell'algebra delle derivazioni degli ottonioni, viene dimostrato che quest'ultima è semplice e quindi isomorfa a G_2.
Resumo:
La tesi analizza la vulnerabilità di un aggregato edilizio posto in Mirandola, studiando le vulnerabilità e i danneggiamenti sui prospetti e negli interni degli edifici.
Resumo:
In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.