976 resultados para improvements
Resumo:
This paper analyses the effects of policy making for air pollution abatement in Spain between 2000 and 2020 under an integrated assessment approach with the AERIS model for number of pollutants (NOx/NO2, PM10/PM2.5, O3, SO2, NH3 and VOC). The analysis of the effects of air pollution focused on different aspects: compliance with the European limit values of Directive 2008/50/EC for NO2 and PM10 for the Spanish air quality management areas; the evaluation of impacts caused by the deposition of atmospheric sulphur and nitrogen on ecosystems; the exceedance of critical levels of NO2 and SO2 in forest areas; the analysis of O3-induced crop damage for grapes, maize, potato, rice, tobacco, tomato, watermelon and wheat; health impacts caused by human exposure to O3 and PM2.5; and costs on society due to crop losses (O3), disability-related absence of work staff and damage to buildings and public property due to soot-related soiling (PM2.5). In general, air quality policy making has delivered improvements in air quality levels throughout Spain and has mitigated the severity of the impacts on ecosystems, health and vegetation in 2020 as target year. The findings of this work constitute an appropriate diagnosis for identifying improvement potentials for further mitigation for policy makers and stakeholders in Spain.
Resumo:
Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (Cα) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å Cα rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the Cα rmsd's are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a Cα rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence.
Resumo:
The increasing economic competition drives the industry to implement tools that improve their processes efficiencies. The process automation is one of these tools, and the Real Time Optimization (RTO) is an automation methodology that considers economic aspects to update the process control in accordance with market prices and disturbances. Basically, RTO uses a steady-state phenomenological model to predict the process behavior, and then, optimizes an economic objective function subject to this model. Although largely implemented in industry, there is not a general agreement about the benefits of implementing RTO due to some limitations discussed in the present work: structural plant/model mismatch, identifiability issues and low frequency of set points update. Some alternative RTO approaches have been proposed in literature to handle the problem of structural plant/model mismatch. However, there is not a sensible comparison evaluating the scope and limitations of these RTO approaches under different aspects. For this reason, the classical two-step method is compared to more recently derivative-based methods (Modifier Adaptation, Integrated System Optimization and Parameter estimation, and Sufficient Conditions of Feasibility and Optimality) using a Monte Carlo methodology. The results of this comparison show that the classical RTO method is consistent, providing a model flexible enough to represent the process topology, a parameter estimation method appropriate to handle measurement noise characteristics and a method to improve the sample information quality. At each iteration, the RTO methodology updates some key parameter of the model, where it is possible to observe identifiability issues caused by lack of measurements and measurement noise, resulting in bad prediction ability. Therefore, four different parameter estimation approaches (Rotational Discrimination, Automatic Selection and Parameter estimation, Reparametrization via Differential Geometry and classical nonlinear Least Square) are evaluated with respect to their prediction accuracy, robustness and speed. The results show that the Rotational Discrimination method is the most suitable to be implemented in a RTO framework, since it requires less a priori information, it is simple to be implemented and avoid the overfitting caused by the Least Square method. The third RTO drawback discussed in the present thesis is the low frequency of set points update, this problem increases the period in which the process operates at suboptimum conditions. An alternative to handle this problem is proposed in this thesis, by integrating the classic RTO and Self-Optimizing control (SOC) using a new Model Predictive Control strategy. The new approach demonstrates that it is possible to reduce the problem of low frequency of set points updates, improving the economic performance. Finally, the practical aspects of the RTO implementation are carried out in an industrial case study, a Vapor Recompression Distillation (VRD) process located in Paulínea refinery from Petrobras. The conclusions of this study suggest that the model parameters are successfully estimated by the Rotational Discrimination method; the RTO is able to improve the process profit in about 3%, equivalent to 2 million dollars per year; and the integration of SOC and RTO may be an interesting control alternative for the VRD process.
Resumo:
Different types of spin–spin coupling constants (SSCCs) for several representative small molecules are evaluated and analyzed using a combination of 10 exchange functionals with 12 correlation functionals. For comparison, calculations performed using MCSCF, SOPPA, other common DFT methods, and also experimental data are considered. A detailed study of the percentage of Hartree–Fock exchange energy in SSCCs and in its four contributions is carried out. From the above analysis, a combined functional formed with local Slater (34%), Hartree–Fock exchange (66%), and P86 correlation functional (S66P86) is proposed in this paper. The accuracy of the values obtained with this hybrid functional (mean absolute deviation of 4.5 Hz) is similar to that of the SOPPA method (mean absolute deviation of 4.6 Hz).