926 resultados para immune responses
Resumo:
The Baltic Sea is a semi-enclosed sea with a steady salinity gradient (3 per mil-30 per mil). Organisms have adapted to such low salinities, but are suspected to be more susceptible to stress. Within the frame of the integrated environmental monitoring BONUS + project "BEAST" the applicability of immune responses of the blue mussel was investigated in Danish coastal waters. The sampling sites were characterised by a salinity range (11-19 per mil) and different mixtures of contaminants (metals, PAHs and POPs), according to chemical analysis of mussel tissues. Variation partitioning (redundancy analysis) was applied to decompose salinity and contamination effects. The results indicated that cellular immune responses (total and differential haemocyte count, phagocytic activity and apoptosis) were mainly influenced by contaminants, whereas humoral factors (haemolytic activity) were mainly impacted by salinity. Hence, cellular immune functions may be suitable as biomarkers in monitoring programmes for the Baltic Sea and other geographic regions with salinity variances of the studied range.
Resumo:
The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His 6 -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1 D299A non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death.
Resumo:
It is generally thought that an effective vaccine to prevent HIV-1 infection should elicit both strong neutralizing antibody and cytotoxic T lymphocyte responses. We recently demonstrated that potent, boostable, long-lived HIV-1 envelope (Env)-specific cytotoxic T lymphocyte responses can be elicited in rhesus monkeys using plasmid-encoded HIV-1 env DNA as the immunogen. In the present study, we show that the addition of HIV-1 Env protein to this regimen as a boosting immunogen generates a high titer neutralizing antibody response in this nonhuman primate species. Moreover, we demonstrate in a pilot study that immunization with HIV-1 env DNA (multiple doses) followed by a final immunization with HIV-1 env DNA plus HIV-1 Env protein (env gene from HXBc2 clone of HIV IIIB; Env protein from parental HIV IIIB) completely protects monkeys from infection after i.v. challenge with a chimeric virus expressing HIV-1 env (HXBc2) on a simian immmunodeficiency virusmac backbone (SHIV-HXBc2). The potent immunity and protection seen in these pilot experiments suggest that a DNA prime/DNA plus protein boost regimen warrants active investigation as a vaccine strategy to prevent HIV-1 infection.
Resumo:
Immune responses of the malaria vector mosquito Anopheles gambiae were monitored systematically by the induced expression of five RNA markers after infection challenge. One newly isolated marker encodes a homologue of the moth Gram-negative bacteria-binding protein (GNBP), and another corresponds to a serine protease-like molecule. Additional previously described markers that respond to immune challenge encode the antimicrobial peptide defensin, a putative galactose lectin, and a putative serine protease. Specificity of the immune responses was indicated by differing temporal patterns of induction of specific markers in bacteria-challenged larvae and adults, and by variations in the effectiveness of different microorganisms and their components for marker induction in an immune-responsive cell line. The markers exhibit spatially distinct patterns of expression in the adult female mosquito. Two of them are highly expressed in different regions of the midgut, one in the anterior and the other in the posterior midgut. Marker induction indicates a significant role of the midgut in insect innate immunity. Immune responses to the penetration of the midgut epithelium by a malaria parasite occur both within the midgut itself and elsewhere in the body, suggesting an immune-related signaling process.
Resumo:
Successful neonatal immunization of humans has proven difficult. We have evaluated CpG-containing oligonucleotides as an adjuvant for immunization of young mice (1–14 days old) against hepatitis B virus surface antigen. The protein-alum-CpG formulation, like the DNA vaccine, produced seroconversion of the majority of mice immunized at 3 or 7 days of age, compared with 0–10% with the protein-alum or protein-CpG formulations. All animals, from neonates to adults, immunized with the protein-alum vaccine exhibited strong T helper (Th)2-like responses [predominantly IgG1, weak or absent cytotoxic T lymphocytes (CTL)]. Th2-type responses also were induced in young mice with protein-CpG (in 1-, 3-, and 7-day-old mice) and protein-alum-CpG (in 1- and 3-day-old mice) but immunization carried out at older ages gave mixed Th1/Th2 (Th0) responses. DNA vaccines gave Th0-like responses when administered at 1 and 7 days of age and Th1-like (predominantly IgG2a and CTL) responses with 14-day-old or adult mice. Surprisingly, the protein-alum-CpG formulation was better than the DNA vaccine for percentage of seroconversion, speed of appearance, and peak titer of the antibody response, as well as prevalence and strength of CTL. These findings may have important implications for immunization of human infants.
Resumo:
Recombinant human erythropoietin (rHuEpo) has been used successfully in the treatment of cancer-related anemia. Clinical observations with several patients with multiple-myeloma treated with rHuEpo has shown, in addition to the improved quality of life, a longer survival than expected, considering the poor prognostic features of these patients. Based on these observations, we evaluated the potential biological effects of rHuEpo on the course of tumor progression by using murine myeloma models (MOPC-315-IgAλ2 and 5T33 MM-IgG2b). Here we report that daily treatment of MOPC-315 tumor-bearing mice with rHuEpo for several weeks induced complete tumor regression in 30–60% of mice. All regressors that were rechallenged with tumor cells rejected tumor growth, and this resistance was tumor specific. The Epo-triggered therapeutic effect was shown to be attributed to a T cell-mediated mechanism. Serum Ig analysis indicated a reduction in MOPC-315 λ light chain in regressor mice. Intradermal inoculation of 5T33 MM tumor cells followed by Epo treatment induced tumor regression in 60% of mice. The common clinical manifestation of myeloma bone disease in patients with multiple-myeloma was established in these myeloma models. Epo administration to these tumor-bearing mice markedly prolonged their survival and reduced mortality. Therefore, erythropoietin seems to act as an antitumor therapeutic agent in addition to its red blood cell-stimulating activity.
Resumo:
The p40 subunit of interleukin 12 (IL-12p40) has been known to act as an IL-12 antagonist in vitro. We here describe the immunosuppressive effect of IL-12p40 in vivo. A murine myoblast cell line, C2C12, was transduced with retro-virus vectors carrying the lacZ gene as a marker and the IL-12p40 gene. IL-12p40 secreted from the transfectant inhibited the IL-12-induced interferon gamma (IFN-gamma) production by splenocytes in vitro. Survival of C2C12 transplanted into allogeneic recipients was substantially prolonged when transduced with IL-12p40. Cytokine (IL-2 and IFN-gamma) production and cytotoxic T lymphocyte induction against allogeneic C2C12 were impaired in the recipients transplanted with the IL-12p40 transfectant. Delayed-type hypersensitivity response against C2C12 was also diminished in the IL-12p40 recipients. Furthermore, serum antibodies against beta-galactosidase of the T-helper 1-dependent isotypes (IgG2 and IgG3) were decreased in the IL-12p40 recipients. These results indicate that locally produced IL-12p40 exerts a potent immunosuppressive effect on T-helper 1-mediated immune responses that lead to allograft rejection. Therefore, IL-12p40 gene transduction would be useful for preventing the rejection of allografts and genetically modified own cells that are transduced with potentially antigenic molecules in gene therapy.
Resumo:
Live vaccine vectors are usually very effective and generally elicit immune responses of higher magnitude and longer duration than nonliving vectors. Consequently, much attention has been turned to the engineering of oral pathogens for the delivery of foreign antigens to the gut-associated lymphoid tissues. However, no bacterial vector has yet been designed to specifically take advantage of the nasal route of mucosal vaccination. Herein we describe a genetic system for the expression of heterologous antigens fused to the filamentous hemagglutinin (FHA) in Bordetella pertussis. The Schistosoma mansoni glutathione S-transferase (Sm28GST) fused to FHA was detected at the cell surface and in the culture supernatants of recombinant B. pertussis. The mouse colonization capacity and autoagglutination of the recombinant microorganism were indistinguishable from those of the wild-type strain. In addition, and in contrast to the wild-type strain, a single intranasal administration of the recombinant strain induced both IgA and IgG antibodies against Sm28GST and against FHA in the bronchoalveolar lavage fluids. No anti-Sm28GST antibodies were detected in the serum, strongly suggesting that the observed immune response was of mucosal origin. This demonstrates, to our knowledge, for the first time that recombinant respiratory pathogens can induce mucosal immune responses against heterologous antigens, and this may constitute a first step toward the development of combined live vaccines administrable via the respiratory route.
Resumo:
Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.
Resumo:
A recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vector-based vaccine that secretes the V3 principal neutralizing epitope of human immunodeficiency virus (HIV) could induce immune response to the epitope and prevent the viral infection. By using the Japanese consensus sequence of HIV-1, we successfully constructed chimeric protein secretion vectors by selecting an appropriate insertion site of a carrier protein and established the principal neutralizing determinant (PND)-peptide secretion system in BCG. The recombinant BCG (rBCG)-inoculated guinea pigs were initially screened by delayed-type hypersensitivity (DTH) skin reactions to the PND peptide, followed by passive transfer of the DTH by the systemic route. Further, immunization of mice with the rBCG resulted in induction of cytotoxic T lymphocytes. The guinea pig immune antisera showed elevated titers to the PND peptide and neutralized HIVMN, and administration of serum IgG from the vaccinated guinea pigs was effective in completely blocking the HIV infection in thymus/liver transplanted severe combined immunodeficiency (SCID)/hu or SCID/PBL mice. In addition, the immune serum IgG was shown to neutralize primary field isolates of HIV that match the neutralizing sequence motif by a peripheral blood mononuclear cell-based virus neutralization assay. The data support the idea that the antigen-secreting rBCG system can be used as a tool for development of HIV vaccines.
Resumo:
The induction of CD8+ cytotoxic T lymphocytes (CTLs) is desirable for immunization against many diseases, and recombinant-synthetic peptide antigens are now favored agents to use. However, a major problem is how to induce CTLs, which requires a T1-type response to such synthetic antigens. We report that T1-type (generating high CTL, low antibody) or T2-type (the reciprocal) responses can be induced by conjugation of the antigen to the carbohydrate polymer mannan: T1 responses are selected by using oxidizing conditions; T2 responses are selected by using reducing conditions for the conjugation. Using human MUC1 as a model antigen in mice, immunization with oxidized mannan-MUC1 fusion protein (ox-M-FP) led to complete tumor protection (challenge up to 5 x 10(7) MUC1+ tumor cells), CTLs, and a high CTL precursor (CTLp) frequency (1/6900), whereas immunization with reduced mannan-MUC1 FP (red-M-FP) led to poor protection after challenge with only 10(6) MUC1+ tumor cells, no CTLs, and a low CTLp frequency (1/87,800). Ox-M-FP selects for a T1 response (mediated here by CD8+ cells) with high interferon gamma (IFN-gamma) secretion, no interleukin 4 (IL-4), and a predominant IgG2a antibody response; red-M-FP selects for a T2-type response with IL-4 production and a high predominant IgG1 antibody response but no IFN-gamma.
Resumo:
A chronic debilitating parasitic infection, viscerotropic leishmaniasis (VTL), has been described in Operation Desert Storm veterans. Diagnosis of this disease, caused by Leishmania tropica, has been difficult due to low or absent specific immune responses in traditional assays. We report the cloning and characterization of two genomic fragments encoding portions of a single 210-kDa L. tropica protein useful for the diagnosis of VTL in U.S. military personnel. The recombinant proteins encoded by these fragments, recombinant (r) Lt-1 and rLt-2, contain a 33-amino acid repeat that reacts with sera from Desert Storm VTL patients and with sera from L. tropica-infected patients with cutaneous leishmaniasis. Antibody reactivities to rLt-1 indicated a bias toward IgG2 in VTL patient sera. Peripheral blood mononuclear cells from VTL patients produced interferon gamma, but not interleukin 4 or 10, in response to rLt-1. No cytokine production was observed in response to parasite lysate. The results indicate that specific leishmanial antigens may be used to detect immune responses in VTL patients with chronic infections.