924 resultados para immediate loading
Resumo:
Background. This study evaluated the time course of recovery of transverse strain in the Achilles and patellar tendons following a bout of resistance exercise. Methods. Seventeen healthy adults underwent sonographic examination of the right patellar (n = 9) or Achilles (n = 8) tendons immediately prior to and following 90 repetitions of weight–bearing exercise. Quadriceps and gastrocnemius exercise were performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the tendon enthesis and transverse strain was repeatedly monitored over a 24 hour recovery period. Results. Resistance exercise resulted in an immediate decrease in Achilles (t7 = 10.6, P<.01) and patellar (t8 = 8.9, P<.01) tendon thickness, resulting in an average transverse strain of 0.14 ± 0.04 and 0.18 ± 0.05. While the average strain was not significantly different between tendons, older age was associated with a reduced transverse strain response (r=0.63, P<.01). Recovery of transverse strain, in contrast, was prolonged compared with the duration of loading and exponential in nature. The mean primary recovery time was not significantly different between Achilles (6.5 ± 3.2 hours) and patellar (7.1 ± 3.2 hours) tendons and body weight accounted for 62% and 64% of the variation in recovery time, respectively. Discussion. Despite structural and biochemical differences between the Achilles and patellar tendons [1], the mechanisms underlying transverse creep–recovery in vivo appear similar and are highly time dependent. Primary recovery required about 7 hours in healthy tendons, with full recovery requiring up to 24 hours. These in vivo recovery times are similar to those reported for axial creep recovery of the vertebral disc in vitro [2], and may be used clinically to guide physical activity to rest ratios in healthy adults. Optimal ratios for high–stress tendons in clinical populations, however, remain unknown and require further attention in light of the knowledge gained in this study.
Resumo:
The past decade has seen an increase in the number of significant natural disasters that have caused considerable loss of life as well as damage to all property markets in the affected areas. In many cases, these natural disasters have not only caused significant property damage, but in numerous cases, have resulted in the total destruction of the property in the location. With these disasters attracting considerable media attention, the public are more aware of where these affected property markets are, as well as the overall damage to properties that have been damaged or destroyed. This heightened level of awareness has to have an impact on the participants in the property market, whether a developer, vendor seller or investor. To assess this issue, a residential property market that has been affected by a significant natural disaster over the past 2 years has been analysed to determine the overall impact of the disaster on buyer, renter and vendor behaviour, as well as prices in these residential markets. This paper is based on data from the Brisbane flood in January 2011. This natural disaster resulted in loss of life and partial and total devastation of considerable residential property sectors. Data for the research have been based on the residential sales and rental listings for each week of the study period to determine the level of activity in the specific property sectors, and these are also compared to the median house prices for the various suburbs for the same period based on suburbs being either flood affected or flood free. As there are 48 suburbs included in the study, it has been possible to group these suburbs on a socio-economic basis to determine possible differences due to location and value. Data were accessed from realestate.com.au, a free real estate site that provides details of current rental and sales listings on a suburb basis, RP Data a commercial property sales database and the Australian Bureau of Statistics. The paper found that sales listings fell immediately after the flood in the affected areas, but there was no corresponding fall or increase in sales listings in the flood-free suburbs. There was a significant decrease in the number of rental listings follow the flood as affected parties sought alternate accommodation. The greatest fall in rental listings was in areas close to the flood-affected suburbs indicating the desire to be close to the flooded property during the repair period.
Resumo:
Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to lifelong disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.
Resumo:
Thunderstorm downbursts are important for wind engineers as they have been shown to produce the design wind speeds for mid to high return periods in many regions of Australia [1]. In structural design codes (e.g. AS/NZS1170.02-02) an atmospheric boundary layer (ABL) is assumed, and a vertical profile is interpolated from recorded 10 m wind speeds. The ABL assumption is however inaccurate when considering the complex structure of a thunderstorm outflow, and its effects on engineered structures. Several researchers have shown that the downburst, close to its point of divergence is better represented by an impinging wall jet profile than the traditional ABL. Physical modelling is the generally accepted approach to estimate wind loads on structures and it is therefore important to physically model the thunderstorm downburst so that its effects on engineered structures may be studied. An advancement on the simple impinging jet theory, addressed here is the addition of a pulsing mechanism to the jet which allows not only the divergent characteristics of a downburst to be produced, but also it allows the associated leading ring vortex to be developed. The ring vortex modelling is considered very important for structural design as it is within the horizontal vortex that the largest velocities occur [2]. This paper discusses the flow field produced by a pulsed wall jet, and also discusses the induced pressures that this type of flow has on a scaled tall building.
Resumo:
Steady and pulsed flow stationary impinging jets have been employed to simulate the wind field produced by a thunderstorm microburst. The effect on the low level wind field due to jet inclination with respect to the impingement surface has been studied. A single point velocity time history has been compared to the full-scale Andrews AFB microburst for model validation. It was found that for steady flow, jet inclination increased the radial extent of high winds but did not increase the magnitude of these winds when compared to the perpendicular impingement case. It was found that for inclined pulsed flow the design wind conditions could increase compared to perpendicular impingement. It was found that the location of peak winds was affected by varying the outlet conditions.
Resumo:
Epithelial to mesenchymal transition (EMT) is considered an important mechanism in tumor resistance to drug treatments; however, in vivo observation of this process has been limited. In this study we demonstrated an immediate and widespread EMT involving all surviving tumor cells following treatment of a mouse model of colorectal liver metastases with the vascular disruptive agent OXi4503. EMT was characterized by significant downregulation of E-cadherin, relocation and nuclear accumulation of b-catenin as well as significant upregulation of ZEB1 and vimentin. Concomitantly, significant temporal upregulation in hypoxia and the pro-angiogenic growth factors hypoxia-inducible factor 1-alpha, hepatocyte growth factor, vascular endothelial growth factor and transforming growth factor-beta were seen within the surviving tumor. The process of EMT was transient and by 5 days after treatment tumor cell reversion to epithelial morphology was evident. This reversal, termed mesenchymal to epithelial transition (MET) is a process implicated in the development of new metastases but has not been observed in vivo histologically. Similar EMT changes were observed in response to other antitumor treatments including chemotherapy, thermal ablation, and antiangiogenic treatments in our mouse colorectal metastasis model and in a murine orthotopic breast cancer model after OXi4503 treatment. These results suggest that EMT may be an early mechanism adopted by tumors in response to injury and hypoxic stress, such that inhibition of EMT in combination with other therapies could play a significant role in future cancer therapy.
Resumo:
Objective: To investigate limb loading and dynamic stability during squatting in the early functional recovery of total hip arthroplasty (THA) patients. Design: Cohort study Setting: Inpatient rehabilitation clinic. Participants: A random sample of 61 THA patients (34♂/27♀; 62±9 yrs, 77±14 kg, 174±9 cm) was assessed twice, 13.2±3.8 days (PRE) and 26.6±3.3 days post-surgery (POST), and compared with a healthy reference group (REF) (22♂/16♀; 47±12yrs; 78±20kg; 175±10cm). Interventions: THA patients received two weeks of standard in-patient rehabilitation. Main Outcome Measure(s): Inter-limb vertical force distribution and dynamic stability during the squat maneuver, as defined by the root mean square (RMS) of the center of pressure in antero-posterior and medio-lateral directions, of operated (OP) and non-operated (NON)limbs. Self-reported function was assessed via FFb-H-OA 2.0 questionnaire. Results: At PRE, unloading of the OP limb was 15.8% greater (P<.001, d=1.070) and antero-posterior and medio-lateral center of pressure RMS were 30-34% higher in THA than REF P<.05). Unloading was reduced by 12.8% towards a more equal distribution from PRE to POST (P<.001, d=0.874). Although medio-lateral stability improved between PRE and POST (OP: 14.8%, P=.024, d=0.397; NON: 13.1%, P=.015, d=0.321), antero-posterior stability was not significantly different. Self-reported physical function improved by 15.8% (P<.001, d=0.965). Conclusion(s): THA patients unload the OP limb and are dynamically more unstable during squatting in the early rehabilitation phase following total hip replacement than healthy adults. Although loading symmetry and medio-lateral stability improved to the level of healthy adults with rehabilitation, antero-posterior stability remained impaired. Measures of dynamic stability and load symmetry during squatting provide quantitative information that can be used to clinically monitor early functional recovery from THA.
Resumo:
There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine, however, there are questions over the comparability of in vitro biomechanical studies from different research groups due to the various methods used for specimen preparation, testing and data collection. The aim of this study was to identify the effect of two key factors on the stiffness of immature bovine thoracic spine motion segments: (i) repeated cyclic loading and (ii) multiple freeze-thaw cycles, to aid in the planning and interpretation of in vitro studies. Two groups of thoracic spine motion segments from 6-8 week old calves were tested in flexion/extension, right/left lateral bending, and right/left axial rotation under moment control. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 50, 100, 200, 300, 400 and 500. Group (B) were tested after each of five freeze-thaw sequences, with data collected from the 10th load cycle in each sequence. Group A: Flexion/extension stiffness reduced significantly over the 500 load cycles (-22%; P=0.001), but there was no significant change between the 5th and 200th load cycles. Lateral bending stiffness decreased significantly (-18%; P=0.009) over the 500 load cycles, but there was no significant change in axial rotation stiffness (P=0.137). Group B: There was no significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (P=0.813) and a near significant reduction in mean stiffness in axial rotation (-6%; P=0.07). However, there was a statistically significant increase in stiffness in lateral bending (+30%; P=0.007). Comparison of in vitro testing results for immature thoracic bovine spine segments between studies can be performed with up to 200 load cycles without significant changes in stiffness. However, when testing protocols require greater than 200 cycles, or when repeated freeze-thaw cycles are involved, it is important to account for the effect of cumulative load and freeze-thaw cycles on spine segment stiffness.
Resumo:
Carbon fibre reinforced polymer (CFRP) strengthening of metallic structures under static loading has shown great potential in the recent years. However, steel structures are often experienced natural (e.g. earthquake, wind) as well as man-made (e.g. vehicular impact, blast) dynamic loading. Therefore, there is a growing interest among the researchers to investigate the capability of CFRP strengthened members under such dynamic conditions. This study focuses on the finite element (FE) numerical modelling and simulation of CFRP strengthened steel column under transverse impact loading to predict the behaviour and failure modes. Impact simulation process and the CFRP strengthened steel column are validated with the existing experimental results in literature. The validated FE model of CFRP strengthened steel column is then further used to investigate the effects of transverse impact loading on its structural performance. The results are presented in terms of transvers e impact force, lateral and axial displacement, and deformed shape to evaluate the effectiveness of CFRP strengthening technique. Comparisons between the bare steel and CFRP strengthened steel columns clearly indicate the performance enhancement of strengthened column under transverse impact loading.
Resumo:
This presentation will provide an overview of the load applied on the residuum of transfemoral amputees fitted with an osseointegrated fixation during (A) rehabilitation, including static and dynamic load bearing exercises (e.g., rowing, adduction, abduction, squat, cycling, walking with aids), and (B) activities of daily living including standardized activities (e.g., level walking in straight line and around a circle, ascending and descending slopes and stairs) and activities in real world environments.
Resumo:
The understanding of the load applied on the residuum through the prosthesis of individuals with transfemoral amputation (TFA) is essential to address a number of concerns that could strongly reduce their quality of life (e.g., residuum skin lesion, prosthesis fitting, alignment). This inner prosthesis loading could be estimated using a typical gait laboratory relying on inverse dynamics equations. Alternative, technological advances proposed over the last decade enabled direct measurement of this kinetic information in a broad variety of situations that could potentially be more relevant in clinical settings. The purposes of this presentation are (A) to review the literature about recent developments in measure and analyses of inner prosthesis loading of TFA, and (B) to extract information that could potentially contribute to a better evidence-based practice.
Resumo:
The demand for an evidence-based clinical practice involving lower limb amputees is increasing. Some of the critical care decisions are related to the loading applied on the residuum partially responsible for comfort and functional outcome. This loading can be assessed using inverse dynamics equations. Typically, this method requires a gait laboratory (e.g., 3D motion analysis system, force-plates). It is mainly suited for the analysis only few steps of walking while being expensive and labour intensive. However, recent scientific and industrial developments demonstrated that discrete and light portable sensors can be placed within the prosthesis to measure accurately the loading during an unlimited number of steps and activities of daily living. Several studies indicated that method based on direct measurements might provide more realistic results. Furthermore, it is a user-friendly method more accessible to clinicians, such as prosthetists. The purpose of this symposium will be to give an overview of these additional opportunities for clinicians to obtain relevant data for evidence-based practice. The three main aims will be: • To present some of the equipment used for direct measurements, • To propose ways to analyse some key data sets, • To give some practical example of data sets for transtibial and transfemoral amputees.