848 resultados para imaged-based control scheme
Resumo:
In conventional robot manipulator control, the desired path is specified in cartesian space and converted to joint space through inverse kinematics mapping. The joint references generated by this mapping are utilized for dynamic control in joint space. Thus, the end-effector position is, in fact, controlled indirectly, in open-loop, and the accuracy of grip position control directly depends on the accuracy of the available kinematic model. In this report, a new scheme for redundant manipulator kinematic control, based on visual servoing is proposed. In the proposed system, a robot image acquired through a CCD camera is processed in order to compute the position and orientation of each link of the robot arm. The robot task is specified as a temporal sequence of reference images of the robot arm. Thus, both the measured pose and the reference pose are specified in the same image space, and its difference is utilized to generate a cartesian space error for kinematic control purposes. The proposed control scheme was applied in a four degree-of-freedom planar redundant robot arm, experimental results are shown
Resumo:
This work describes the development of a nonlinear control strategy for an electro-hydraulic actuated system. The system to be controlled is represented by a third order ordinary differential equation subject to a dead-zone input. The control strategy is based on a nonlinear control scheme, combined with an artificial intelligence algorithm, namely, the method of feedback linearization and an artificial neural network. It is shown that, when such a hard nonlinearity and modeling inaccuracies are considered, the nonlinear technique alone is not enough to ensure a good performance of the controller. Therefore, a compensation strategy based on artificial neural networks, which have been notoriously used in systems that require the simulation of the process of human inference, is used. The multilayer perceptron network and the radial basis functions network as well are adopted and mathematically implemented within the control law. On this basis, the compensation ability considering both networks is compared. Furthermore, the application of new intelligent control strategies for nonlinear and uncertain mechanical systems are proposed, showing that the combination of a nonlinear control methodology and artificial neural networks improves the overall control system performance. Numerical results are presented to demonstrate the efficacy of the proposed control system
Resumo:
This work will propose the control of an induction machine in field coordinates with imposed stator current based on theory of variable structure control and sliding mode. We describe the model of an induction machine in field coordinates with imposed stator current and we show the design of variable structure control and sliding mode to get a desirable dynamic performance of that plant. To estimate the inaccessible states we will use a state observer (estimator) based on field coordinates induction machine. We will present the results of simulations in any operation condition (start, speed reversal and load) and with parameters variation of the machine compared to a PI control scheme.
Resumo:
In some practical problems, for instance in the control systems for the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. New necessary and sufficient linear matrix inequalities (LMI) conditions for the design of state-derivative feedback for multi-input (MI) linear systems are proposed. For multi-input/multi-output (MIMO) linear time-invariant or time-varying plants, with or without uncertainties in their parameters, the proposed methods can include in the LMI-based control designs the specifications of the decay rate, bounds on the output peak, and bounds on the state-derivative feedback matrix K. These design procedures allow new specifications and also, they consider a broader class of plants than the related results available in the literature. The LMIs, when feasible, can be efficiently solved using convex programming techniques. Practical applications illustrate the efficiency of the proposed methods.
Resumo:
This paper investigates both theoretically and experimentally the effect of the location and number of sensors and magnetic bearing actuators on both global and local vibration reduction along a rotor using a feedforward control scheme. Theoretical approaches developed for the active control of beams have been shown to be useful as simplified models for the rotor scenario. This paper also introduces the time-domain LMS feedforward control strategy, used widely in the active control of sound and vibration, as an alternative control methodology to the frequency-domain feedforward approaches commonly presented in the literature. Results are presented showing that for any case where the same number of actuators and error sensors are used there can be frequencies at which large increases in vibration away from the error sensors can occur. It is also shown that using a larger number of error sensors than actuators results in better global reduction of vibration but decreased local reduction. Overall, the study demonstrated that an analysis of actuator and sensor locations when feedforward control schemes are used is necessary to ensure that harmful increased vibrations do not occur at frequencies away from rotor-bearing natural frequencies or at points along the rotor not monitored by error sensors.
Resumo:
An optimal control framework to support the management and control of resources in a wide range of problems arising in agriculture is discussed. Lessons extracted from past research on the weed control problem and a survey of a vast body of pertinent literature led to the specification of key requirements to be met by a suitable optimization framework. The proposed layered control structure—including planning, coordination, and execution layers—relies on a set of nested optimization processes of which an “infinite horizon” Model Predictive Control scheme plays a key role in planning and coordination. Some challenges and recent results on the Pontryagin Maximum Principle for infinite horizon optimal control are also discussed.
Resumo:
Linear parameter varying (LPV) control is a model-based control technique that takes into account time-varying parameters of the plant. In the case of rotating systems supported by lubricated bearings, the dynamic characteristics of the bearings change in time as a function of the rotating speed. Hence, LPV control can tackle the problem of run-up and run-down operational conditions when dynamic characteristics of the rotating system change significantly in time due to the bearings and high vibration levels occur. In this work, the LPV control design for a flexible shaft supported by plain journal bearings is presented. The model used in the LPV control design is updated from unbalance response experimental results and dynamic coefficients for the entire range of rotating speeds are obtained by numerical optimization. Experimental implementation of the designed LPV control resulted in strong reduction of vibration amplitudes when crossing the critical speed, without affecting system behavior in sub- or supercritical speeds. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators (IGs) in large interconnected power systems is presented in this study. The low-voltage-ride-through (LVRT) capability is provided by extending the range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralised multi-variable controllers for large interconnected power systems using the linear quadratic (LQ) output-feedback control design method and the controller design procedure is formulated as an optimisation problem involving rank-constrained linear matrix inequality (LMI). In this study, it is shown that a static synchronous compensator (STATCOM) with energy storage system (ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.
Resumo:
This work proposes the development of an Adaptive Neuro-fuzzy Inference System (ANFIS) estimator applied to speed control in a three-phase induction motor sensorless drive. Usually, ANFIS is used to replace the traditional PI controller in induction motor drives. The evaluation of the estimation capability of the ANFIS in a sensorless drive is one of the contributions of this work. The ANFIS speed estimator is validated in a magnetizing flux oriented control scheme, consisting in one more contribution. As an open-loop estimator, it is applied to moderate performance drives and it is not the proposal of this work to solve the low and zero speed estimation problems. Simulations to evaluate the performance of the estimator considering the vector drive system were done from the Matlab/Simulink(R) software. To determine the benefits of the proposed model, a practical system was implemented using a voltage source inverter (VSI) to drive the motor and the vector control including the ANFIS estimator, which is carried out by the Real Time Toolbox from Matlab/Simulink(R) software and a data acquisition card from National Instruments.
Resumo:
This thesis deals with a novel control approach based on the extension of the well-known Internal Model Principle to the case of periodic switched linear exosystems. This extension, inspired by power electronics applications, aims to provide an effective design method to robustly achieve the asymptotic tracking of periodic references with an infinite number of harmonics. In the first part of the thesis the basic components of the novel control scheme are described and preliminary results on stabilization are provided. In the second part, advanced control methods for two applications coming from the world high energy physics are presented.
Resumo:
Research work carried out in focusing a novel multiphase-multilevel ac motor drive system much suitable for low-voltage high-current power applications. In specific, six-phase asymmetrical induction motor with open-end stator winding configuration, fed from four standard two-level three-phase voltage source inverters (VSIs). Proposed synchronous reference frame control algorithm shares the total dc source power among the 4 VSIs in each switching cycle with three degree of freedom. Precisely, first degree of freedom concerns with the current sharing between two three-phase stator windings. Based on modified multilevel space vector pulse width modulation shares the voltage between each single VSIs of two three-phase stator windings with second and third degree of freedom, having proper multilevel output waveforms. Complete model of whole ac motor drive based on three-phase space vector decomposition approach was developed in PLECS - numerical simulation software working in MATLAB environment. Proposed synchronous reference control algorithm was framed in MATLAB with modified multilevel space vector pulse width modulator. The effectiveness of the entire ac motor drives system was tested. Simulation results are given in detail to show symmetrical and asymmetrical, power sharing conditions. Furthermore, the three degree of freedom are exploited to investigate fault tolerant capabilities in post-fault conditions. Complete set of simulation results are provided when one, two and three VSIs are faulty. Hardware prototype model of quad-inverter was implemented with two passive three-phase open-winding loads using two TMS320F2812 DSP controllers. Developed McBSP (multi-channel buffered serial port) communication algorithm able to control the four VSIs for PWM communication and synchronization. Open-loop control scheme based on inverse three-phase decomposition approach was developed to control entire quad-inverter configuration and tested with balanced and unbalanced operating conditions with simplified PWM techniques. Both simulation and experimental results are always in good agreement with theoretical developments.
Resumo:
This thesis deals with distributed control strategies for cooperative control of multi-robot systems. Specifically, distributed coordination strategies are presented for groups of mobile robots. The formation control problem is initially solved exploiting artificial potential fields. The purpose of the presented formation control algorithm is to drive a group of mobile robots to create a completely arbitrarily shaped formation. Robots are initially controlled to create a regular polygon formation. A bijective coordinate transformation is then exploited to extend the scope of this strategy, to obtain arbitrarily shaped formations. For this purpose, artificial potential fields are specifically designed, and robots are driven to follow their negative gradient. Artificial potential fields are then subsequently exploited to solve the coordinated path tracking problem, thus making the robots autonomously spread along predefined paths, and move along them in a coordinated way. Formation control problem is then solved exploiting a consensus based approach. Specifically, weighted graphs are used both to define the desired formation, and to implement collision avoidance. As expected for consensus based algorithms, this control strategy is experimentally shown to be robust to the presence of communication delays. The global connectivity maintenance issue is then considered. Specifically, an estimation procedure is introduced to allow each agent to compute its own estimate of the algebraic connectivity of the communication graph, in a distributed manner. This estimate is then exploited to develop a gradient based control strategy that ensures that the communication graph remains connected, as the system evolves. The proposed control strategy is developed initially for single-integrator kinematic agents, and is then extended to Lagrangian dynamical systems.
Resumo:
File system security is fundamental to the security of UNIX and Linux systems since in these systems almost everything is in the form of a file. To protect the system files and other sensitive user files from unauthorized accesses, certain security schemes are chosen and used by different organizations in their computer systems. A file system security model provides a formal description of a protection system. Each security model is associated with specified security policies which focus on one or more of the security principles: confidentiality, integrity and availability. The security policy is not only about “who” can access an object, but also about “how” a subject can access an object. To enforce the security policies, each access request is checked against the specified policies to decide whether it is allowed or rejected. The current protection schemes in UNIX/Linux systems focus on the access control. Besides the basic access control scheme of the system itself, which includes permission bits, setuid and seteuid mechanism and the root, there are other protection models, such as Capabilities, Domain Type Enforcement (DTE) and Role-Based Access Control (RBAC), supported and used in certain organizations. These models protect the confidentiality of the data directly. The integrity of the data is protected indirectly by only allowing trusted users to operate on the objects. The access control decisions of these models depend on either the identity of the user or the attributes of the process the user can execute, and the attributes of the objects. Adoption of these sophisticated models has been slow; this is likely due to the enormous complexity of specifying controls over a large file system and the need for system administrators to learn a new paradigm for file protection. We propose a new security model: file system firewall. It is an adoption of the familiar network firewall protection model, used to control the data that flows between networked computers, toward file system protection. This model can support decisions of access control based on any system generated attributes about the access requests, e.g., time of day. The access control decisions are not on one entity, such as the account in traditional discretionary access control or the domain name in DTE. In file system firewall, the access decisions are made upon situations on multiple entities. A situation is programmable with predicates on the attributes of subject, object and the system. File system firewall specifies the appropriate actions on these situations. We implemented the prototype of file system firewall on SUSE Linux. Preliminary results of performance tests on the prototype indicate that the runtime overhead is acceptable. We compared file system firewall with TE in SELinux to show that firewall model can accommodate many other access control models. Finally, we show the ease of use of firewall model. When firewall system is restricted to specified part of the system, all the other resources are not affected. This enables a relatively smooth adoption. This fact and that it is a familiar model to system administrators will facilitate adoption and correct use. The user study we conducted on traditional UNIX access control, SELinux and file system firewall confirmed that. The beginner users found it easier to use and faster to learn then traditional UNIX access control scheme and SELinux.
Resumo:
When proposing primary control (changing the world to fit self)/secondary control (changing self to fit the world) theory, Weisz et al. (1984) argued for the importance of the “serenity to accept the things I cannot change, the courage to change the things I can” (p. 967), and the wisdom to choose the right control strategy that fits the context. Although the dual processes of control theory generated hundreds of empirical studies, most of them focused on the dichotomy of PC and SC, with none of these tapped into the critical concept: individuals’ ability to know when to use what. This project addressed this issue by using scenario questions to study the impact of situationally adaptive control strategies on youth well-being. To understand the antecedents of youths’ preference for PC or SC, we also connected PCSC theory with Dweck’s implicit theory about the changeability of the world. We hypothesized that youths’ belief about the world’s changeability impacts how difficult it was for them to choose situationally adaptive control orientation, which then impacts their well-being. This study included adolescents and emerging adults between the ages of 18 and 28 years (Mean = 20.87 years) from the US (n = 98), China (n = 100), and Switzerland (n = 103). Participants answered a questionnaire including a measure of implicit theories about the fixedness of the external world, a scenario-based measure of control orientation, and several measures of well-being. Preliminary analyses of the scenario-based control orientation measures showed striking cross-cultural similarity of preferred control responses: while for three of the six scenarios primary control was the predominately chosen control response in all cultures, for the other three scenarios secondary control was the predominately chosen response. This suggested that youths across cultures are aware that some situations call for primary control, while others demand secondary control. We considered the control strategy winning the majority of the votes to be the strategy that is situationally adaptive. The results of a multi-group structural equation mediation model with the extent of belief in a fixed world as independent variable, the difficulties of carrying out the respective adaptive versus non-adaptive control responses as two mediating variables and the latent well-being variable as dependent variable showed a cross-culturally similar pattern of effects: a belief in a fixed world was significantly related to higher difficulties in carrying out the normative as well as the non-normative control response, but only the difficulty of carrying out the normative control response (be it primary control in situations where primary control is normative or secondary control in situations where secondary control is normative) was significantly related to a lower reported well-being (while the difficulty of carrying out the non-normative response was unrelated to well-being). While previous research focused on cross-cultural differences on the choice of PC or SC, this study shed light on the universal necessity of applying the right kind of control to fit the situation.
Resumo:
Rms voltage regulation may be an attractive possibility for controlling power inverters. Combined with a Hall Effect sensor for current control, it keeps its parallel operation capability while increasing its noise immunity, which may lead to a reduction of the Total Harmonic Distortion (THD). Besides, as voltage regulation is designed in DC, a simple PI regulator can provide accurate voltage tracking. Nevertheless, this approach does not lack drawbacks. Its narrow voltage bandwidth makes transients last longer and it increases the voltage THD when feeding non-linear loads, such as rectifying stages. On the other hand, the implementation can fall into offset voltage error. Furthermore, the information of the output voltage phase is hidden for the control as well, making the synchronization of a 3-phase setup not trivial. This paper explains the concept, design and implementation of the whole control scheme, in an on board inverter able to run in parallel and within a 3-phase setup. Special attention is paid to solve the problems foreseen at implementation level: a third analog loop accounts for the offset level is added and a digital algorithm guarantees 3-phase voltage synchronization.