967 resultados para human hepatocelluar carcinoma BEL-7402 cells
Resumo:
A diet high in fiber is associated with a decreased incidence and growth of colon cancers. Butyrate, a four-carbon short-chain fatty acid product of fiber fermentation within the colon, appears to mediate these salutary effects. We sought to determine the molecular mechanism by which butyrate mediates growth inhibition of colonic cancer cells and thereby to elucidate the molecular link between a high-fiber diet and the arrest of colon carcinogenesis. We show that concomitant with growth arrest, butyrate induces p21 mRNA expression in an immediate-early fashion, through transactivation of a promoter cis-element(s) located within 1.4 kb of the transcriptional start site, independent of p53 binding. Studies using the specific histone hyperacetylating agent, trichostatin A, and histone deacetylase 1 indicate that growth arrest and p21 induction occur through a mechanism involving histone hyperacetylation. We show the critical importance of p21 in butyrate-mediated growth arrest by first confirming that stable overexpression of the p21 gene is able to cause growth arrest in the human colon carcinoma cell line, HT-29. Furthermore, using p21-deleted HCT116 human colon carcinoma cells, we provide convincing evidence that p21 is required for growth arrest to occur in response to histone hyperacetylation, but not for serum starvation nor postconfluent growth. Thus, p21 appears to be a critical effector of butyrate-induced growth arrest in colonic cancer cells, and may be an important molecular link between a high-fiber diet and the prevention of colon carcinogenesis.
Resumo:
A differentiation induction subtraction hybridization strategy is being used to identify and clone genes involved in growth control and terminal differentiation in human cancer cells. This scheme identified melanoma differentiation associated gene-7 (mda-7), whose expression is up-regulated as a consequence of terminal differentiation in human melanoma cells. Forced expression of mda-7 is growth inhibitory toward diverse human tumor cells. The present studies elucidate the mechanism by which mda-7 selectively suppresses the growth of human breast cancer cells and the consequence of ectopic expression of mda-7 on human breast tumor formation in vivo in nude mice. Infection of wild-type, mutant, and null p53 human breast cancer cells with a recombinant type 5 adenovirus expressing mda-7, Ad.mda-7 S, inhibited growth and induced programmed cell death (apoptosis). Induction of apoptosis correlated with an increase in BAX protein, an established inducer of programmed cell death, and an increase in the ratio of BAX to BCL-2, an established inhibitor of apoptosis. Infection of breast carcinoma cells with Ad.mda-7 S before injection into nude mice inhibited tumor development. In contrast, ectopic expression of mda-7 did not significantly alter cell cycle kinetics, growth rate, or survival in normal human mammary epithelial cells. These data suggest that mda-7 induces its selective anticancer properties in human breast carcinoma cells by promoting apoptosis that occurs independent of p53 status. On the basis of its selective anticancer inhibitory activity and its direct antitumor effects, mda-7 may represent a new class of cancer suppressor genes that could prove useful for the targeted therapy of human cancer.
Resumo:
Epithelial (E)-cadherin and its associated cytoplasmic proteins (α-, β-, and γ-catenins) are important mediators of epithelial cell–cell adhesion and intracellular signaling. Much evidence exists suggesting a tumor/invasion suppressor role for E-cadherin, and loss of expression, as well as mutations, has been described in a number of epithelial cancers. To investigate whether E-cadherin gene (CDH1) mutations occur in colorectal cancer, we screened 49 human colon carcinoma cell lines from 43 patients by single-strand conformation polymorphism (SSCP) analysis and direct sequencing. In addition to silent changes, polymorphisms, and intronic variants in a number of the cell lines, we detected frameshift single-base deletions in repeat regions of exon 3 (codons 120 and 126) causing premature truncations at codon 216 in four replication-error-positive (RER+) cell lines (LS174T, HCT116, GP2d, and GP5d) derived from 3 patients. In LS174T such a mutation inevitably contributes to its lack of E-cadherin protein expression and function. Transfection of full-length E-cadherin cDNA into LS174T cells enhanced intercellular adhesion, induced differentiation, retarded proliferation, inhibited tumorigenicity, and restored responsiveness to the migratory effects induced by the motogenic trefoil factor 2 (human spasmolytic polypeptide). These results indicate that, although inactivating E-cadherin mutations occur relatively infrequently in colorectal cancer cell lines overall (3/43 = 7%), they are more common in cells with an RER+ phenotype (3/10 = 30%) and may contribute to the dysfunction of the E-cadherin–catenin-mediated adhesion/signaling system commonly seen in these tumors. These results also indicate that normal E-cadherin-mediated cell adhesion can restore the ability of colonic tumor cells to respond to trefoil factor 2.
Resumo:
Background: Cancer shows a great diversity in its clinical behavior which cannot be easily predicted using the currently available clinical or pathological markers. The identification of pathways associated with lymph node metastasis (N+) and recurrent head and neck squamous cell carcinoma (HNSCC) may increase our understanding of the complex biology of this disease. Methods: Tumor samples were obtained from untreated HNSCC patients undergoing surgery. Patients were classified according to pathologic lymph node status (positive or negative) or tumor recurrence (recurrent or non-recurrent tumor) after treatment (surgery with neck dissection followed by radiotherapy). Using microarray gene expression, we screened tumor samples according to modules comprised by genes in the same pathway or functional category. Results: The most frequent alterations were the repression of modules in negative lymph node (N0) and in non-recurrent tumors rather than induction of modules in N+ or in recurrent tumors. N0 tumors showed repression of modules that contain cell survival genes and in non-recurrent tumors cell-cell signaling and extracellular region modules were repressed. Conclusions: The repression of modules that contain cell survival genes in N0 tumors reinforces the important role that apoptosis plays in the regulation of metastasis. In addition, because tumor samples used here were not microdissected, tumor gene expression data are represented together with the stroma, which may reveal signaling between the microenvironment and tumor cells. For instance, in non-recurrent tumors, extracellular region module was repressed, indicating that the stroma and tumor cells may have fewer interactions, which disable metastasis development. Finally, the genes highlighted in our analysis can be implicated in more than one pathway or characteristic, suggesting that therapeutic approaches to prevent tumor progression should target more than one gene or pathway, specially apoptosis and interactions between tumor cells and the stroma.
Resumo:
Thymic CD4(+)CD25(+) cells play an important role in immune regulation and are continuously developed in the thymus as an independent lineage. How these cells are generated, what are their multiple pathways of suppressive activity and which are their specific markers are questions that remain unanswered. To identify molecules involved in the function and development of human CD4(+)CD25(+) T regulatory cells we targeted thymic CD4(+)CD25(+) cells by peptide phage display. A phage library containing random peptides was screened ex vivo for binding to human thymic CD4(+)CD25(+) T cells. After four rounds of selection on CD4(+)CD25(+) enriched populations of thymocytes, we sequenced several phage displayed peptides and selected one with identity to the Vitamin D Receptor (VDR). We confirmed the binding of the VDR phage to active Vitamin D in vitro, as well as the higher expression of VDR in CD4(+)CD25(+) cells. We suggest that differential expression of VDR on natural Tregs may be related to the relevance of Vitamin D in function and ontogeny of these cells.
Resumo:
Metalloproteinases, especially metal loprotemase-2 (MMP-2), are known for their role in the degradation of the extracellular matrix. Nevertheless, a thorough understanding of MMP-2 expression in neoplastic lesions of the uterine cervix has yet to be accomplished. This study aimed to analyze the MMP-2 expression in cervical intraepithelial neoplasia III (CIN3) and in cervical squamous cell carcinoma, in tumor cells and adjacent stromal cells. MMP-2 expression was assessed by an immunohistochernical technique. MMP-2 expression was greater in the stromal cells of invasive carcinomas than in CIN3 (p < 0.0001). MMP-2 expression in stromal cells correlates with the clinical stage, gradually increasing as the tumor progresses (p = 0.04). This study corroborates that stromal cells play an important role in tumor invasion and progression, mediated by the progressive enhancement of MMP-2 expression from CIN3 to advanced invasive tumor. The intense MMP-2 expression most probably is associated with poor tumor prognosis.
Resumo:
The mechanisms underlying atorvastatin supression of ABCB1 gene expression, at transcriptional and post-transcriptional levels of ABCB1 gene in HepG2 (human hepatocellular carcinoma) cells were investigated. Quantitative real-time PCR was used to measure mRNA levels, as well as to estimate the half-life of ABCB1 mRNA. Western blotting analysis was performed in order to measure protein levels of ABCB1. Electrophoretic mobility shift assay (EMSA) was used to evaluate interactions between protein(s) and ABCB1 promoter region. Exposure to atorvastatin for 24 h resulted in a dose-dependent decrease of ABCB1 mRNA and protein levels, which was not abolished by addition of farnesyl or geranylgeranyl pyrophosphate. After removing fetal bovine serum from the media, however, ABCB1 expression was decreased by 2-fold in either HepG2 cells treated and non-treated with atorvastatin. Addition of cholesterol to serum free media abolished this latter effect on ABCB1 mRNA levels. In EMSA using a 5`-end-labeled 241 bp ABCB1 promoter DNA fragment (-198 to +43) as probe, the binding of the proteins to the probe was reduced by NF-Y, but not changed by NF kappa B, AP-1, and SP1. However, the NF-Y binding activity was similar in control and atorvastatin-treated cells. mRNA stability studies revealed that ABCB1 mRNA degradation was increased in 1, 10 and 20 mu M atorvastatin-treated versus control cells (half-lives of 2 h versus 7 h). Therefore, evidence is provided that decreased mRNA stability by atorvastatin treatment may explain the decrease in ABCB1 transcript levels. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Baccharis dracunculifolia is the most important vegetal source of propolis in southeast Brazil, and researchers have been investigating its biological properties. Propolis is a complex resinous hive product collected by bees from several plants, showing a very complex chemical composition. It has been employed since ancient times due to its therapeutic properties, such as antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antitumour activities, among others. The goal of this work was to compare the cytotoxic action of B. dracunculifolia, propolis and two isolated compounds (caffeic and cinnamic acids) on human laryngeal epidermoid carcinoma (HEp-2) cells in vitro. These cells were incubated with different concentrations of each variable, and cell viability was assessed by the crystal violet method. Lower concentrations of B. dracunculifolia (extract and essential oil), propolis, as well as caffeic and cinnamic acids, showed no cytotoxic activity against HEp-2 cells. On the other hand, elevated concentrations (50 and 100 mu g per 100 mu L) exerted a cytotoxic action, and propolis showed a more efficient action than its vegetal source and isolated compounds. Further investigation is still needed in order to explore the potential of these variables as antitumour agents and to understand their mechanisms of action.
Resumo:
BACKGROUND. Secretory epithelial cells of human prostate contain a keratan sulfate proteoglycan (KSPG) associated with the prostatic secretory granules (PSGs). The proteoglycan has not been identified, but like the PSGs, it is lost in the early stages of malignant transformation. METHODS. Anion exchange and affinity chromatography were used to purify KSPG from human prostate tissue. Enzymatic deglycosylation was used to remove keratan sulfate (KS). The core protein was isolated using 2D gel electrophoresis, digested in-gel with trypsin, and identified by peptide mass fingerprinting (PMF). RESULTS. The purified proteoglycan was detected as a broad smear on Western blots with an apparent molecular weight of 65-95 kDa. The KS moiety was susceptible to digestion with keratanase 11 and peptide N-glycosidase F defining it as highly sulfated and N-linked to the core protein. The core protein was identified, following deglycosylation and PMF, as lumican and subsequently confirmed by Western blotting using an anti-lumican antibody. CONCLUSIONS. The KSPG associated with PSGs in normal prostate epithelium is lumican. While the role of lumican in extracellular matrix is well established, its function in the prostate secretory process is not known. It's potential to facilitate packaging of polyamines in PSGs, to act as a tumor suppressor and to mark the early stages of malignant transformation warrant further investigation. (C) 2003 Wiley-Liss, Inc.
Resumo:
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is an intracellular enzyme that has been proposed to metabolize peptides within cells, thereby affecting antigen presentation and G protein-coupled receptor signal transduction. However, only a small number of intracellular substrates of EP24.15 have been reported previously. Here we have identified over 100 peptides in human embryonic kidney 293 (HEK293) cells that are derived from intracellular proteins; many but not all of these peptides are substrates or products of EP24.15. First, cellular peptides were extracted from HEK293 cells and incubated in vitro with purified EP24.15. Then the peptides were labeled with isotopic tags and analyzed by mass spectrometry to obtain quantitative data on the extent of cleavage. A related series of experiments tested the effect of overexpression of EP24.15 on the cellular levels of peptides in HEK293 cells. Finally, synthetic peptides that corresponded to 10 of the cellular peptides were incubated with purified EP24.15 in vitro, and the cleavage was monitored by high pressure liquid chromatography and mass spectrometry. Many of the EP24.15 substrates identified by these approaches are 9-11 amino acids in length, supporting the proposal that EP24.15 can function in the degradation of peptides that could be used for antigen presentation. However, EP24.15 also converts some peptides into products that are 8-10 amino acids, thus contributing to the formation of peptides for antigen presentation. In addition, the intracellular peptides described here are potential candidates to regulate protein interactions within cells.
Resumo:
Introduction: Stem cells are characterized by the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. An important source of adult stem cells is the dental pulp. In dentistry, regenerative strategies are of importance because of hard dental tissue damage especially as result of caries lesions, trauma, or iatrogenic procedures. The regeneration of dental tissues relies on the ability of stem cells to produce extracellular (ECM) proteins encountered in the dental pulp tissue. Thus, the aim of this study was to analyze the expression and distribution of proteins encountered in dental pulp ECM (type I collagen, fibronectin, and tenascin) in stem cells. Methods: Human immature dental pulp stem cells (hIDPSCs) from deciduous (DL-1 and DL-4 cell lines) and permanent (DL-2) teeth were used. The distribution of ECM proteins was observed using the immunofluorescence technique. The gene expression profile was evaluated using reverse transcription polymerase chain reaction (RT-PCR) analysis. Results: Positive reactions for all ECM proteins were observed independently of the hIDPSCs analyzed. Type I collagen appeared less evident in DL-2 than in other hIDPSCs. Fibronectin and tenascin were less clear in DL-4. The RT-PCR reactions showed that type I collagen was lesser expressed in the DL-2 cells, whereas fibronectin and tenascin were similarly expressed in all hIDPSCs. Conclusions: The distribution and expression of ECM proteins differ among the hIDPSCs. These differences seemed to be related to the donor tooth conditions (deciduous or permanent, retained or erupted, and degree of root reabsorption). (J Endod 2010;36:826-831)
Resumo:
We show here that the neurotrophin nerve growth factor (NGF), which has been shown to be a mitogen for breast cancer cells, also stimulates cell survival through a distinct signaling pathway. Breast cancer cell lines (MCF-7, T47-D, BT-20, and MDA-MB-231) were found to express both types of NGF receptors: p140(trkA) and p75(NTR). The two other tyrosine kinase receptors for neurotrophins, TrkB and TrkC, were not expressed. The mitogenic effect of NGF on breast cancer cells required the tyrosine kinase activity of p140(trkA) as well as the mitogen-activated protein kinase (MAPK) cascade, but was independent of p75(NTR). I, contrast, the anti-apoptotic effect of NGF (studied using the ceramide analogue C2) required p75(NTR) as well as the activation of the transcription factor NF-kB, but neither p140(trkA) nor MAPK was necessary. Other neurotrophins (BDNF, NT-3, NT-4/5) also induced cell survival, although not proliferation, emphasizing the importance of p75(NTR) in NGF-mediated survival. Both the pharmacological NF-KB inhibitor SN50, and cell transfection with IkBm, resulted in a diminution of NGF anti-apoptotic effect. These data show that two distinct signaling pathways are required for NGF activity and confirm the roles played by p75(NTR) and NF-kappaB in the activation of the survival pathway in breast cancer cells.
Resumo:
Objectives. The MUC1 antigen can be used to identify epithelial cells from the background of hemopoietic cells. The present investigation describes patterns of overexpression of two novel MUC1 splice variants in human cervical carcinoma cell lines. Methods. RT-PCR was carried out to determine MUC1 splice variants in the cervical cancer cell lines C-4 II, C-33A, DoTc 2 4510, C-4 I, SiHa, HT3, Hs 636 T (C4-I), and HeLa. Results. The novel MUC1 splice variant D was expressed in all cell lines and the novel MUC1 splice variant C was expressed in all cell lines but C-33A. Variants A and B were expressed in all (variant A) and all but one (variant B) cell line. MUC1/REP was expressed in all cell lines and MUC1/SEC was positive in all but two cell lines (C-33 A, DoTc 2 4510). All but one cell line (C-33A) expressed MUC1/X and MUC1/Y, and two cell lines (C-33 A, DoTc 2 4510) did not express MUC1/Z, respectively. MUC1 variants A, D, and REP could be demonstrated consistently among all eight cervical carcinoma cell lines we have examined. Conclusions. The present study describes the feasibility of detecting a large number of MUC1 variants, including MUC1 variants C and D which are described for cervical carcinoma cells for the first time. Further studies will examine the presence of MUC1 splice variants' expression in human cervical carcinoma tissue.
Resumo:
Fungi have been considered a potential source of natural anticancer drugs. However, studies on these organisms have mainly focused on compounds present in the sporocarp and mycelium. The aim of this study was to assess the anticancer potential of fungal spores using a bioassay-guided fractionation with cancer and normal cell lines. Crude extracts from spores of the basidiomycetous fungus Pisolithus tinctorius were prepared using five solvents/solvent mixtures in order to select the most effective crude extraction procedure. A dichloromethane/methanol (DCM/MeOH) mixture was found to produce the highest extraction yield, and this extract was fractionated into 11 fractions. Crude extracts and fractions were assayed for cytotoxicity in the human osteocarcinoma cell line MG63, the human breast carcinoma cell line T47D, the human colon adenocarcinoma cell line RKO, and the normal human brain capillary endothelial cell line hCMEC/D3. Cytotoxicity was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction assay. The results showed a reduction in cancer cell viability of approximately 95% with 4 of 11 fractions without a significant reduction in viability of hCMEC/D3 cells. Data demonstrated that spores of P. tinctorius might serve as an interesting source of compounds with potential anticancer properties.
Resumo:
BACKGROUND: A characteristic SYT-SSX fusion gene resulting from the chromosomal translocation t(X;18)(p11;q11) is detectable in almost all synovial sarcomas, a malignant soft tissue tumor widely believed to originate from as yet unidentified pluripotent stem cells. The resulting fusion protein has no DNA binding motifs but possesses protein-protein interaction domains that are believed to mediate association with chromatin remodeling complexes. Despite recent advances in the identification of molecules that interact with SYT-SSX and with the corresponding wild type SYT and SSX proteins, the mechanisms whereby the SYT-SSX might contribute to neoplastic transformation remain unclear. Epigenetic deregulation has been suggested to be one possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: We addressed the effect of SYT/SSX expression on the transcriptome of four independent isolates of primary human bone marrow mesenchymal stem cells (hMSC). We observed transcriptional changes similar to the gene expression signature of synovial sarcoma, principally involving genes whose regulation is linked to epigenetic factors, including imprinted genes, genes with transcription start sites within a CpG island and chromatin related genes. Single population analysis revealed hMSC isolate-specific transcriptional changes involving genes that are important for biological functions of stem cells as well as genes that are considered to be molecular markers of synovial sarcoma including IGF2, EPHRINS, and BCL2. Methylation status analysis of sequences at the H19/IGF2 imprinted locus indicated that distinct epigenetic features characterize hMSC populations and condition the transcriptional effects of SYT-SSX expression. CONCLUSIONS/SIGNIFICANCE: Our observations suggest that epigenetic features may define the cellular microenvironment in which SYT-SSX displays its functional effects.