986 resultados para hormone urine level
Resumo:
A novel approach is presented to determine mercury in urine samples, employing vortex-assisted ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction to prepare samples, and screen-printed electrodes modified with gold nanoparticles for voltammetric analysis. Mercury was extracted directly from non-digested urine samples in a water-immiscible ionic liquid, being back-extracted into an acidic aqueous solution. Subsequently, it was determined using gold nanoparticle-modified screen-printed electrodes. Under optimized microextraction conditions, standard addition calibration was applied to urine samples containing 5, 10 and 15 μg L−1 of mercury. Standard addition calibration curves using standards between 0 and 20 μg L−1 gave a high level of linearity with correlation coefficients ranging from 0.990 to 0.999 (N = 5). The limit of detection was empirical and statistically evaluated, obtaining values that ranged from 0.5 to 1.5 μg L−1, and from 1.1 to 1.3 μg L−1, respectively, which are significantly lower than the threshold level established by the World Health Organization for normal mercury content in urine (i.e., 10–20 μg L−1). A certified reference material (REC-8848/Level II) was analyzed to assess method accuracy finding 87% and 3 μg L−1 as the recovery (trueness) and standard deviation values, respectively. Finally, the method was used to analyze spiked urine samples, obtaining good agreement between spiked and found concentrations (recovery ranged from 97 to 100%).
Resumo:
While empirical research to date has generally supported positive effects of estrogen on verbal memory performance in women, the literature examining specific effects of Hormone Replacement Therapy (HRT) on cognitive functioning in mid-life women is more equivocal. The Rivermead Behavioural Memory Test-Extended Version (RBMT-E), a measure of everyday memory functioning in adults within an average range of cognitive functioning, was administered to a sample of 104 New Zealand women aged 40 to 60 years who had self-selected to either use or not use HRT (53 HRT users and 51 non-users). Self-report. measures of mood, stress, general health and menopausal symptoms were also administered. These variables, along with age and education level, were used in analyses of group differences on the everyday memory measures. Results showed significant differences between the groups for three sub-tests of the RBMT-E:'Story Immediate', 'Story Delayed', and 'Message Delayed'. Women who use HRT scored higher on these subtests than those who do not use HRT. After calculation of a total profile score (adjusting for age and IQ), HRT users score higher than HRT non-users on the RBMT-E overall measure of Everyday Memory. These pilot results suggest that HRT use in this sample-is related to enhanced verbal memory in everyday memory tasks and that the RBMT-E may be a useful tool for further work in this area of research.
Resumo:
Growth hormone (GH) stimulates mandibular growth but its effect on the mandibular condylar cartilage is not well. understood. Objective: This study was designed to understand the influence of GH on mitotic activity and on chondrocytes maturation. The effect of GH on cartilage thickness was also determined. Design: An animal model witt differences in GH status was determined by comparing mutant Lewis dwarf rats with reduced pituitary GH synthesis (dwarf), with normal rats and dwarf animals treated with GH. Six dwarf rats were injected with GH for 6 days, while other six normal rats and six dwarf rats composed other two groups. Mandibular condylar tissues were processed and stained for Herovici's stain and immunohistochemistry, for proliferating cell nuclear antigen (PCNA) and alkaline phosphatase (ALP). Measurements of cartilage thickness as well as the numbers of immunopositive cells for each antibody were analysed by one-way analysis of variance. Results: Cartilage thickness was significantly reduced in the dwarf animals treated with GH. PCNA expression was significant lower in the dwarf rats, but significantly increased when these animals were treated with GH. ALP expression was significant higher in the dwarf animals, while it was significantly reduced in the dwarf animals treated with GH. Conclusions: The results from this study showed that GH stimulates mitotic activity and delays cartilage cells maturation in the mandibular condyte. This effect at the cellular Level may produce changes in the cartilage thickness. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Relationships between cadmium (Cd) body burden, kidney function and coumarin metabolism were investigated using two groups of 197 and 200 healthy Thais with men and women in nearly equal numbers. A mean age of one group was 30.5 years and it was 39.3 years for the other group. Of 397, 20 subjects (5%) excreted urine Cd between 1.4 mug/g and 3.8 mug/g creatinine and these subjects faced 10-15% increase in the probability of having abnormal urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG-uria). The prevalence of NAG-uria varied with Cd body burden in a dose-dependent manner (chi(2) = 22, P < 0.008). Also NAG-nuria was one of the three kidney effect markers tested that showed the greatest strength of correlation with urine Cd in both men and women (r = 0.48 P < 0.001). In addition, urine Cd excretion of men and women showed a positive correlation (r = 0.46 to 0.54. P < 0.001) with urine 7-hydroxycoumarin (7-OHC) excretion which was used as a marker of liver cytochrome P450 2A6 (CYP2A6) enzyme activity. Urinary CA excretion accounted for 25% of the total variation in urine 7-OHC excretion (P < 0.001). These data suggest that Cd may increase the expression of CYP2A6 in liver, resulting in enhanced coumarin metabolism in subjects with high Cd body burden. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this experiment, creatinine (C) excretion by sheep was measured when they were fed different diets at different levels of intake. Creatinine excretion was not affected by the level of feed intake or the addition of salt to lucerne-based diets. However, differences between individual animals were significant. Creatinine excretion was significantly affected by diets, which were formulated by combining different amounts of lucerne chaff, oaten chaff and sorghum. It was also found that there were significant diurnal changes in the ratios of purine derivatives to creatinine (PD:C) in 3 hourly urine samples when the animals were fed either once or twice daily, but the average value for the PD:C ratio of any two urine samples taken 12 h apart was close to the daily mean. The results of this experiment suggest that if separate determination of the creatinine excretion by individual animals is made and the average value of the ratio of PD:C in two spot urine samples taken 12 h apart is used to predict PD excretion by spot urine sampling, microbial nitrogen flow can be estimated more accurately than when a fixed value of creatinine excretion is used for all animals and only a single urine sample is taken. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
As a model of high trophic level carnivores, sledge dogs were fed from 2 to 18 months of age with minke whale blubber containing organohalogen compounds (OHC) corresponding to 128 µg PCB/day. Controls were fed uncontaminated porcine fat. Thyroid hormone levels were assessed in 7 exposed and 7 control sister bitches (sampled at age 6-18 months) and 4 exposed and 4 control pups, fed the same diet as their mothers (sampled age 3-12 months). Lower free and total T3 and T4 were seen in exposed vs. control bitches beyond 10 months of age, and total T3 was lower through 3-12 months of age in exposed pups. A negative correlation with thyroid gland weight was significant for SumDDT, as was a positive association with total T3 for dieldrin. This study therefore supports observational data that OHCs may adversely affect thyroid functions, and it suggests that OHC exposure duration of 10 months or more may be required for current OHC contamination levels to result in detectable adverse effects on thyroid hormone dynamics.
Resumo:
The central role of translation regulation in the control of critical cellular processes has long been recognized. Yet the systematic exploration of quantitative changes in translation at a genome-wide scale in response to specific stimuli has only recently become technically feasible. Using a genetic approach, we have identified new Arabidopsis weak-ethylene insensitive mutants that also display defects in translation, which suggested the existence of a previously unknown molecular module involved in ethylene-mediated translation regulation of components of this signaling pathway. To explore this link in detail, we implemented for Arabidopsis the ribosome-footprinting technology, which enables the study of translation at a whole-genome level at single codon resolution[1]. Using ribosome-footprinting we examined the effects of short exposure to ethylene on the Arabidopsis translatome looking for ethylene-triggered changes in translation rates that could not be explained by changes in transcript levels. The results of this research, in combination with the characterization of a subset of the aforementioned weak-ethylene insensitive mutants that are defective in the UPF genes (core-components of the nonsense-mediated mRNA decay machinery), uncovered a translation-based branch of the ethylene signaling pathway[2]. In the presence of ethylene, translation of a negative regulator of ethylene signaling EBF2 is repressed, despite induced transcription of this gene. These translational effects of ethylene require the long 3´UTR of EBF2 (3´EBF2), which is recognized by the C-terminal end of the key ethylene-signaling protein EIN2 (EIN2C) in the cytoplasm once EIN2C is released from the ER-membrane by proteolytic cleavage. EIN2C binds the 3´EBF2, recruits the UPF proteins and moves to P-bodies, where the translation of EBF2 in inhibited despite its mRNA accumulation. Once the ethylene signal is withdrawn, the translation of the stored EBF2 mRNAs is resumed, thus rapidly dampening the ethylene response. These findings represent a mechanistic paradigm of gene-specific regulation of translation in response to a key growth regulator. Translation regulatory elements can be located in both 3′ and 5′ UTRs. We are now focusing on the ead1 and ead2 mutants, another set of ethylene-signaling mutants defective in translational regulation. Ribosome-footprinting on the ead1 mutant revealed an accumulation of translating ribosomes in the 5´UTRs of uORF-containing genes and reduction in the levels of ribosomes in the main ORF. The mutant is also impaired in the translation of GFP when this reporter is fused to WT 5´UTR of potential EAD1 targets but not when GFP is fused to the uORF-less versions of the same 5´UTRs. Our hypothesis is that EAD1/2 work as a complex that is required for the efficient translation of mRNAs that have common structural (complex 5´UTR with uORFs) and functional (regulation of key cellular processes) features. We are working towards the identification of the conditions where the EAD1 regulation of translation is required. [1] Ingolia, N. et al. (2009) Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science, 324; 218-222 [2] Merchante, C. et al. (2015) Gene-Specific Translation Regulation Mediated by the Hormone-Signaling Molecule EIN2. Cell, 163(3): 684-697
Resumo:
This randomized and controlled trial investigated whether the increase in elite training at different altitudes altered the oxidative stress biomarkers of the nervous system. This is the first study to investigate four F4-neuroprostanes and four F2-dihomo-isoprostanes quantified in 24-hour urine. The quantification was carried out by Ultra High Pressure Liquid Chromatography-triple Quadrupole-Tandem Mass Spectrometry (UHPLC-QqQ-MS/MS). Sixteen elite triathletes agreed to participate in the project. They were randomized in two groups, a group submitted to Altitude Training (n=8) and a group submitted to Sea Level Training (n=8), with a Control group of non-athletes (n=8). After experimental period, the Altitude Training group triathletes gave significant data: 17-epi-17-F2t-dihomo-IsoP (from 5.2 ± 1.4 µg/mL 24 h-1 to 6.6 ± 0.6 µg/mL 24 h-1), ent-7(RS)-7-F2t-dihomo-IsoP (from 6.6 ± 1.7 µg/mL 24 h-1 to 8.6 ± 0.9 µg /mL 24 h-1), and ent-7-epi-7-F2t-dihomo-IsoP (from 8.4 ± 2.2 µg/mL 24 h-1 to 11.3 ± 1.8 µg/mL 24 h-1) increased, while, of the neuronal degeneration-related compounds, only 10-epi-10-F4t-NeuroP (8.4 ± 1.7 µg/mL 24 h-1) and 10-F4t-NeuroP (5.2 ± 2.9 µg/mL 24 h-1) were detected in this group. For the control group and sea level training groups, no significant changes had occurred at the end of the 2-weeks experimental period. Therefore, and as the main conclusion, the training at moderate altitude increased the F4-NeuroPs- and F2-dihomo-isoPs-related oxidative damage of the central nervous system (CNS) compared to similar training at sea level.
Resumo:
Background: Azoospermia is the medical condition of a man not having any measurable level of sperm in his semen. Follicle stimulating hormone (FSH) is a member of the glycoprotein hormone family that plays an important role in human reproduction because of its essential role in normal spermatogenesis. Various Single Nucleotide Polymorphisms (SNPs) have been reported within FSH receptor (FSHR) gene that may affect the receptor function. Objective: The present study aimed to investigate the correlation between two FSHR SNPs at positions A919G, A2039G, and susceptibility to azoospermia in a group of Iranian azoospermic men. The association between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Materials and Methods: This case control study was performed on 212 men with azoospermia (126 non-obstructive and 86 obstructive) and 200 healthy Iranian men. Two FSHR gene SNPs were genotyped using PCR-RFLP method. The relationship between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Results: Statistical analysis indicated that at A919G position, AA genotype and A allele were more frequent in obstructive azoospermia cases compared to non- obstructive or normal men (p=0.001). Regarding A2039G polymorphisms, no significant difference was observed between both azoospermia groups and the controls. The mean level of serum FSH was higher in the non-obstructive men compared to the obstructive patients (23.8 versus 13.8, respectively, p= 0.04). Conclusion: The results of the present study indicated that the genetic polymorphisms in the FSHR gene might increase the susceptibility to azoospermia in Iranian men.
Resumo:
Here we propose a protocol for embryogenic cultures induction, proliferation and maturation for the Brazilian conifer Podocarpus lambertii, and investigated the effect of abscisic acid (ABA) and glutathione (GSH) supplementation on the maturation phase. ABA, zeatin (Z) and salicylic acid (SA) endogenous levels were quantified. Number of somatic embryos obtained in ABA-supplemented treatment was signifi- cant higher than in ABA-free treatment, showing the relevance of ABA supplementation during somatic embryos maturation. Histological analysis showed the stereotyped sequence of developmental stages in conifer somatic embryos, reaching the late torpedo-staged embryo. GSH supplementation in maturation culture medium improved the somatic embryos number and morphological features. GSH 0 mM and GSH 0.1 mM treatments correlated with a decreased ABA endogenous level during maturation, while GSH 0.5 mM treatment showed constantlevels. Alltreatments resulted in decreased Z endogenous levels, supporting the concept that cytokinins are important during the initial cell division but not for the later stages of embryo development. The lowest SA levels found in GSH 0.5 mM treatment were coincident with early embryonic development, and this treatment resulted in the highest development of somatic embryos. Thus, a correlation between lower SA levels and improved somatic embryo formation can be hypothesized
Resumo:
International evidence on the cost and effects of interventions for reducing the global burden of depression remain scarce. Aims: To estimate the population-level cost-effectiveness of evidence-based depression interventions and their contribution towards reducing current burden. Method: Primary-care-based depression interventions were modelled at the level of whole populations in 14 epidemiological subregions of the world. Total population-level costs (in international dollars or I$) and effectiveness (disability adjusted life years (DALYs) averted) were combined to form average and incremental cost-effectiveness ratios. Results: Evaluated interventions have the potential to reduce the current burden of depression by 10–30%. Pharmacotherapy with older antidepressant drugs, with or without proactive collaborative care, are currently more cost-effective strategies than those using newer antidepressants, particularly in lower-income subregions. Conclusions: Even in resource-poor regions, each DALYaverted by efficient depression treatments in primary care costs less than 1 year of average per capita income, making such interventions a cost-effective use of health resources. However, current levels of burden can only be reduced significantlyif there is a substantialincrease substantial increase intreatment coverage.