896 resultados para higher order field theory
Resumo:
Equations for the computation of integral and partial thermodynamic properties of mixing in quarternary systems are derived using data on constituent binary systems and shortest distance composition paths to the binaries. The composition path from a quarternary composition to the i-j binary is characterized by a constant value of (Xi − Xj). The merits of this composition path over others with constant values for View the MathML source or Xi are discussed. Finally the equations are generalized for higher order systems. They are exact for regular solutions, but may be used in a semiempirical mode for non-regular solutions.
Resumo:
We revisit the extraction of alpha(s)(M-tau(2)) from the QCD perturbative corrections to the hadronic tau branching ratio, using an improved fixed-order perturbation theory based on the explicit summation of all renormalization-group accessible logarithms, proposed some time ago in the literature. In this approach, the powers of the coupling in the expansion of the QCD Adler function are multiplied by a set of functions D-n, which depend themselves on the coupling and can be written in a closed form by iteratively solving a sequence of differential equations. We find that the new expansion has an improved behavior in the complex energy plane compared to that of the standard fixed-order perturbation theory (FOPT), and is similar but not identical to the contour-improved perturbation theory (CIPT). With five terms in the perturbative expansion we obtain in the (MS) over bar scheme alpha(s)(M-tau(2)) = 0.338 +/- 0.010, using as input a precise value for the perturbative contribution to the hadronic width of the tau lepton reported recently in the literature.
Resumo:
We present an extensive study of Mott insulator (MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with harmonic traps. For this we apply the inhomogeneous mean-field theory developed by Sheshadri et al. Phys. Rev. Lett. 75, 4075 (1995)]. Our results for the BH model with one type of spinless bosons agree quantitatively with quantum Monte Carlo simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also extend our inhomogeneous mean-field theory to study BH models with harmonic traps and (a) two species of bosons or (b) spin-1 bosons. With two species of bosons, we obtain rich phase diagrams with a variety of SF and MI phases and associated shells when we include a quadratic confining potential. For the spin-1 BH model, we show, in a representative case, that the system can display alternating shells of polar SF and MI phases, and we make interesting predictions for experiments in such systems.
Resumo:
This paper deals with the role of the higher-order evanescent modes generated at the area discontinuities in the acoustic attenuation characteristics of an elliptical end-chamber muffler with an end-offset inlet and end-centered outlet. It has been observed that with an increase in length, the muffler undergoes a transition from being acoustically short to acoustically long. Short end chambers and long end chambers are characterized by transverse plane waves and axial plane waves, respectively, in the low-frequency range. The nondimensional frequency limit k(0)(D-1/2) or k(0)R(0) as well as the chamber length to inlet/outlet pipe diameter ratio, i.e., L/d(0), up to which the muffler behaves like a short chamber and the corresponding limit beyond which the muffler is acoustically long are determined. The limits between which neither the transverse plane-wave model nor the conventional axial plane-wave model gives a satisfactory prediction have also been determined, the region being called the intermediate range. The end-correction expression for this muffler configuration in the acoustically long limit has been obtained using 3-D FEA carried on commercial software, covering most of the dimension range used in the design exercise. Development of a method of combining the transverse plane wave model with the axial plane wave model using the impedance Z] matrix is another noteworthy contribution of this work.
Resumo:
In this paper, we are interested in high spectral efficiency multicode CDMA systems with large number of users employing single/multiple transmit antennas and higher-order modulation. In particular, we consider a local neighborhood search based multiuser detection algorithm which offers very good performance and complexity, suited for systems with large number of users employing M-QAM/M-PSK. We apply the algorithm on the chip matched filter output vector. We demonstrate near-single user (SU) performance of the algorithm in CDMA systems with large number of users using 4-QAM/16-QAM/64-QAM/8-PSK on AWGN, frequency-flat, and frequency-selective fading channels. We further show that the algorithm performs very well in multicode multiple-input multiple-output (MIMO) CDMA systems as well, outperforming other linear detectors and interference cancelers reported in the literature for such systems. The per-symbol complexity of the search algorithm is O(K2n2tn2cM), K: number of users, nt: number of transmit antennas at each user, nc: number of spreading codes multiplexed on each transmit antenna, M: modulation alphabet size, making the algorithm attractive for multiuser detection in large-dimension multicode MIMO-CDMA systems with M-QAM.
Resumo:
A power filter is necessary to connect the output of a power converter to the grid so as to reduce the harmonic distortion introduced in the line current and voltage by the power converter. Many a times, a transformer is also present before the point of common coupling. Magnetic components often constitute a significant part of the overall weight, size and cost of the grid interface scheme. So, a compact inexpensive design is desirable. A higher-order LCL-filter and a transformer are increasingly being considered for grid interconnection of the power converter. This study proposes a design method based on a three-winding transformer, that generates an integrated structure that behaves as an LCL-filter, with both the filter inductances and the transformer that are merged into a single electromagnetic component. The parameters of the transformer are derived analytically. It is shown that along with a filter capacitor, the transformer parameters provide the filtering action of an LCL-filter. A single-phase full-bridge power converter is operated as a static compensator for performance evaluation of the integrated filter transformer. A resonant integrator-based single-phase phase locked loop and stationary frame AC current controller are employed for grid frequency synchronisation and line current control, respectively.
Resumo:
Exponential compact higher-order schemes have been developed for unsteady convection-diffusion equation (CDE). One of the developed scheme is sixth-order accurate which is conditionally stable for the Peclet number 0 <= Pe <= 2.8 and the other is fourth-order accurate which is unconditionally stable. Schemes for two-dimensional (2D) problems are made to use alternate direction implicit (ADI) algorithm. Example problems are solved and the numerical solutions are compared with the analytical solutions for each case.
Resumo:
It is a tough task to distinguish a short-range ferromagnetically correlated cluster-glass phase from a canonical spin-glass-like phase in many magnetic oxide systems using conventional magnetometry measurements. As a case study, we investigate the magnetic ground state of La0.85Sr0.15CoO3, which is often debated based on phase separation issues. We report the results of two samples of La0.85Sr0.15CoO3 (S-1 and S-2) prepared under different conditions. Neutron depolarization, higher harmonic ac susceptibility and magnetic relaxation studies were carried out along with conventional magnetometry measurements to differentiate subtle changes at the microscopic level. There is no evidence of ferromagnetic correlation in the sample S-2 attributed to a spin-glass phase, and this is compounded by the lack of existence of a second order component of higher harmonic ac susceptibility and neutron depolarization. A magnetic relaxation experiment at different temperatures complements the spin glass characteristic in S-2. All these signal a sharp variance when we consider the cluster-glass-like phase (phase separated) in S-1, especially when prepared from an improper chemical synthesis process. This shows that the nonlinear ac susceptibility is a viable tool to detect ferromagnetic clusters such as those the neutron depolarization study can reveal.
Resumo:
The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of non-linearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
The complex perovskite oxide SrRuO3 shows intriguing transport properties at low temperatures due to the interplay of spin, charge, and orbital degrees of freedom. One of the open questions in this system is regarding the origin and nature of the low-temperature glassy state. In this paper we report on measurements of higher-order statistics of resistance fluctuations performed in epitaxial thin films of SrRuO3 to probe this issue. We observe large low-frequency non-Gaussian resistance fluctuations over a certain temperature range. Our observations are compatible with that of a spin-glass system with properties described by hierarchical dynamics rather than with that of a simple ferromagnet with a large coercivity.
Resumo:
We formally extend the CFT techniques introduced in arXiv: 1505.00963, to phi(2d0/d0-2) theory in d = d(0) dimensions and use it to compute anomalous dimensions near d(0) = 3, 4 in a unified manner. We also do a similar analysis of the O(N) model in three dimensions by developing a recursive combinatorial approach for OPE contractions. Our results match precisely with low loop perturbative computations. Finally, using 3-point correlators in the CFT, we comment on why the phi(3) theory in d(0) = 6 is qualitatively different.
Resumo:
A complete development for the higher-order asymptotic solutions of the crack tip fields and finite element calculations for mode I loading of hardening materials in plane strain are performed. The results show that in the higher-order asymptotic solution (to the twentieth order), only three coefficients are independent. These coefficients are determined by matching with the finite element solutions carried out in the present paper (our attention is focused on the first five terms of the higher-order asymptotic solution). We obtain an analytic characterization of crack tip fields, which conform very well to the finite element solutions over wide range. A modified two parameter criterion based on the asymptotic solution of five terms is presented. The upper bound and lower bound fracture toughness curves predicted by modified two parameter criterion are given. These two curves agree with most of the experimental data and fully capture the proper trend.
Resumo:
In this thesis, we discuss 3d-3d correspondence between Chern-Simons theory and three-dimensional N = 2 superconformal field theory. In the 3d-3d correspondence proposed by Dimofte-Gaiotto-Gukov information of abelian flat connection in Chern-Simons theory was not captured. However, considering M-theory configuration giving the 3d-3d correspondence and also other several developments, the abelian flat connection should be taken into account in 3d-3d correspondence. With help of the homological knot invariants, we construct 3d N = 2 theories on knot complement in 3-sphere for several simple knots. Previous theories obtained by Dimofte-Gaiotto-Gukov can be obtained by Higgsing of the full theories. We also discuss the importance of all flat connections in the 3d-3d correspondence by considering boundary conditions in 3d N = 2 theories and 3-manifold.
Resumo:
We develop a method for performing one-loop calculations in finite systems that is based on using the WKB approximation for the high energy states. This approximation allows us to absorb all the counterterms analytically and thereby avoids the need for extreme numerical precision that was required by previous methods. In addition, the local approximation makes this method well suited for self-consistent calculations. We then discuss the application of relativistic mean field methods to the atomic nucleus. Self-consistent, one loop calculations in the Walecka model are performed and the role of the vacuum in this model is analyzed. This model predicts that vacuum polarization effects are responsible for up to five percent of the local nucleon density. Within this framework the possible role of strangeness degrees of freedom is studied. We find that strangeness polarization can increase the kaon-nucleus scattering cross section by ten percent. By introducing a cutoff into the model, the dependence of the model on short-distance physics, where its validity is doubtful, is calculated. The model is very sensitive to cutoffs around one GeV.