776 resultados para high strength concrete
Resumo:
Neste estudo foram analisados experimentalmente o comportamento de 24 pilares curtos de Concreto de Ultra Alta Resistência - CUAR, confinados por armaduras helicoidais, avaliando especificamente os acréscimos de resistência e ductilidade obtidos com diferentes níveis de pressão lateral de confinamento. Na etapa experimental foram realizados ensaios de pilares curtos de CUAR com as seguintes características: - seção circular de 7,2 cm de diâmetro e comprimento de 23 cm, e quatro níveis de resistência à compressão do concreto sendo eles, 165, 175, 200 e 229 MPa, dosados sem e com adição de fibras metálicas; - diferentes espaçamentos das armaduras helicoidais, de modo que fossem obtidas situações com baixo, médio e alto índice de confinamento e taxa de armadura longitudinal fixa. Os ensaios de compressão centrada foram realizados com controle de deslocamento, de modo que foram obtidas as curvas força x deslocamento completas. Constatou-se que a seção resistente dos pilares de CUAR é a formada pelo núcleo de concreto confinado, área delimitada pelo eixo da armadura transversal. Observou-se que o CUAR com fibras metálicas apresenta maior deformação do núcleo de concreto confinado em relação ao núcleo de concreto confinado de CUAR sem adição de fibras metálicas, indicando dessa forma, que os pilares de CUAR com fibras metálicas apresentam comportamento mais dúctil. Para as situações de alto confinamento foram gerados ao concreto do núcleo confinado significativos acréscimos de resistência e deformação axial, aumentando a resistência do concreto confinado em relação a resistência do concreto não confinado em: 82,26%, 75,34%, 90,46% e 70,51%, respectivamente, e as deformações axiais do concreto confinado em relação a deformação axial do concreto não confinado em: 433%, 474%, 647% e 550%. Finalmente, acredita-se que os resultados obtidos poderão trazer subsídios para aplicações futuras desta técnica de confinamento na construção de novos elementos estruturais e no reforço de pilares submetidos a elevados níveis de solicitação axial.
Resumo:
En el conjunto de materiales de construcción habituales en la edificación y las obras de ingeniería, el hormigón destaca entre otras razones por su excelente comportamiento frente a las altas temperaturas y la exposición al fuego. El presente estudio se centra en la adherencia residual entre el hormigón y las barras de acero corrugado soldable tras exponer probetas a altas temperaturas y enfriarlas hasta temperatura ambiente por convección natural. El estudio incluye hormigones de resistencia convencional, hormigones de alta resistencia y hormigones reforzados con fibras de polipropileno y fibras de acero. La adherencia hormigón-acero se ha medido mediante el conocido ensayo de pull-out. La campaña experimental también ha incluido la resistencia a compresión y la resistencia a tracción indirecta. Parte de las probetas se han ensayado a 28 días de edad a temperatura ambiente. A 60 días de edad se han repetido los ensayos a temperatura ambiente y se han realizado esos mismos ensayos en probetas calentadas en un horno industrial hasta tres rangos de temperatura: 450°C, 650°C y 825°C. Previo al proceso de calentamiento han sido sometidas durante 3 horas a un escalón de secado a 120°C. Mediante la metodología propuesta ha sido posible caracterizar la evolución de la pérdida de adherencia residual entre el acero y el hormigón conforme se exponen los especímenes a temperaturas más elevadas. La adición de fibras no tiene una influencia clara en la adherencia a temperatura ambiente. Sin embargo, sí se ha conseguido determinar una mejora sustancial de la adherencia residual en los hormigones, reforzados con fibras de acero sometidos a altas temperaturas.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2015.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.
Resumo:
An artificial neural network (ANN) is presented to predict a 28-day compressive strength of a normal and high strength self compacting concrete (SCC) and high performance concrete (HPC) with high volume fly ash. The ANN is trained by the data available in literature on normal volume fly ash because data on SCC with high volume fly ash is not available in sufficient quantity. Further, while predicting the strength of HPC the same data meant for SCC has been used to train in order to economise on computational effort. The compressive strengths of SCC and HPC as well as slump flow of SCC estimated by the proposed neural network are validated by experimental results.
Resumo:
Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.
Resumo:
The aim of this study is to obtain the fracture characteristics of low and medium compressive strength self consolidating concrete (SCC) for notched and un-notched plain concrete beams by using work of fracture G(F) and size effect model G(f) methods and comparing them with those of normal concrete and high performance concrete. The results show that; (i) with an increase in compressive strength, G(F) increases and G(f) decreases; (ii) with an increase in depth of beam, the decrease in nominal stress of notched beam is more when compared with that of a notchless beam.
Resumo:
In this work, a methodology to achieve ordinary-, medium-, and high-strength self-consolidating concrete (SCC) with and without mineral additions is proposed. The inclusion of Class F fly ash increases the density of SCC but retards the hydration rate, resulting in substantial strength gain only after 28 days. This delayed strength gain due to the use of fly ash has been considered in the mixture design model. The accuracy of the proposed mixture design model is validated with the present test data and mixture and strength data obtained from diverse sources reported in the literature.
Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength
Resumo:
Developments of aluminum alloys that can retain strength at and above 250 degrees C present a significant challenge. In this paper we report an ultrafine scale Al-Fe-Ni eutectic alloy with less than 3.5 aa transition metals that exhibits room temperature ultimate tensile strength of similar to 400 MPa with a tensile ductility of 6-8%. The yield stress under compression at 300 degrees C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al-Al3Ni rod eutectic with spacing of similar to 90 nm enveloped by a lamellar eutectic of Al-Al9FeNi (similar to 140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al-Al3Ni eutectic colony indicates accommodation of plasticity in alpha-Al with dislocation accumulation at the alpha-Al/Al3Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The permeability of concrete is influenced by the porosity and the interconnectivity of the pores in the cement paste and the microcracks in concrete, especially in the interface of paste-aggregate. The movements of gases, liquids, and ions through concrete is important because of their interactions with concrete constituents, including pore water, which can alter the integrity of concrete directly and indirectly, leading to the deterioration of structures. This study reports the findings from an investigation carried out to study the effect of the mixture variations on the durability of medium- and high-strength self-consolidating concrete (SCC). The mixture variations studied include the type of mineral admixtures, such as limestone powder (LSP) and pulverized fuel ash (PFA), and viscositymodifying admixtures (VMA) for both medium- and high-strength SCC. Air permeability, water permeability, capillary absorption, and chloride diffusivity were used to assess the durability of SCC mixtures in comparison with normal, vibrated concretes. The results showed that SCC mixtures, for medium- and high-strength grades using PFA followed by LSP, have lower permeability properties compared with normal concretes. SCC made with VMA had a higher sorptivity, air permeability, and water permeability compared with other SCC mixtures, which can be attributed to higher watercement ratio (w/c) and lack of pore filling effect. An in-place migration coefficient was obtained using the in-place ion migration test. This was used to compare the potential diffusivity of different concretes. The results indicated that SCC, for both grades of strength, made with PFA showed much lower diffusivity values in comparison with other mixtures, whereas the SCC mixtures with VMA showed higher diffusivity.
Resumo:
An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.
Resumo:
Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.
Resumo:
The texture of concrete blocks is very important and is often the decisive factor when choosing a product, particularly if the building specifications call for high-strength blocks allied to low-cost finish, in which case exposed blocks with a closer texture are often preferred. Furthermore, a closer texture, especially for exteriors, may be a vital factor in ensuring the building's durability. At present, however, there is no standard to quantify the texture of a structural block. Further, when studying masonry blocks compressive strength should never be overlooked. This article discusses a procedure to produce concrete block textures with and without the addition of lime, but still to achieve the required compressive strength. The method used in this study, to evaluate texture, proved to be simpler and cheaper than methods reported by other authors in the literature. The addition of small quantities of lime proved beneficial for both texture and compressive strength. Increasing the amount of lime further, however, only improved texture.
Resumo:
High performance materials are needed for the reconstruction of such a singular building as a cathedral, since in addition to special mechanical properties, high self compact ability, high durability and high surface quality, are specified. Because of the project’s specifications, the use of polypropylene fiber-reinforced, self-compacting concrete was selected by the engineering office. The low quality of local materials and the lack of experience in applying macro polypropylene fiber for structural reinforcement with these components materials required the development of a pretesting program. To optimize the mix design, performance was evaluated following technical, economical and constructability criteria. Since the addition of fibers reduces concrete self-compactability, many trials were run to determine the optimal mix proportions. The variables introduced were paste volume; the aggregate skeleton of two or three fractions plus limestone filler; fiber type and dosage. Two mix designs were selected from the preliminary results. The first one was used as reference for self-compactability and mechanical properties. The second one was an optimized mix with a reduction in cement content of 20 kg/m3and fiber dosage of 1 kg/m3. For these mix designs, extended testing was carried out to measure the compression and flexural strength, modulus of elasticity, toughness, and water permeability resistance