945 resultados para high resolution gas chromatography
High-Resolution N2 Adsorption Isotherms at 77.4 K: Critical Effect of the He Used During Calibration
Resumo:
Accurate characterization of the microporous structure in porous solids is of paramount importance for several applications such as energy and gas storage, nanoconfinement reactions, and so on. Among the different techniques for precise textural characterization, high-precision gas adsorption measurement of probe molecules at cryogenic temperatures (e.g., N2 at 77.4 K and Ar at 87.3 K) is the most widely used, after appropriate calibration of the sample holder with a probe gas, which does not experience physisorption processes. Although traditionally helium has been considered not to be adsorbed in porous solids at cryogenic temperatures, here we show that even at 77.4 K (high above its boiling temperature, 4 K) the use of He in the calibration step can give rise to erroneous interpretations when narrow micropores/constrictions are present.
Resumo:
In this manuscript, a study of the effect of microwave radiation on the high-performance liquid chromatography separation of tocopherols and vitamin K1 was conducted. The novelty of the application was the use of a relatively low polarity mobile phase in which the dielectric heating effect was minimized to evaluate the nonthermal effect of the microwave radiation over the separation process. Results obtained show that microwave-assisted high-performance liquid chromatography had a shorter analysis time from 31.5 to 13.3 min when the lowest microwave power was used. Moreover, narrower peaks were obtained; hence the separation was more efficient maintaining or even increasing the resolution between the peaks. This result confirms that the increase in mobile phase temperature is not the only variable for improving the separation process but also other nonthermal processes must intervene. Fluorescence detection demonstrated better signal-to-noise compared to photodiode arrayed detection mainly due to the independent effect of microwave pulses on the baseline noise, but photodiode array detection was finally chosen as it allowed a simultaneous detection of nonfluorescent compounds. Finally, a determination of the content of the vitamin E homologs was carried out in different vegetable oils. Results were coherent with those found in the literature.
Resumo:
The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of materials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar 16O1H+, and 40Ca 16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the analytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 μg g-1 and 0.14 μg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. ^ The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. ^ Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis) samples was achieved using the developed method. ^
Resumo:
Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.
Resumo:
Oxygen equilibrium curves have been widely used to understand oxygen transport in numerous organisms. A major challenge has been to monitor oxygen binding characteristics and concomitant pH changes as they occur in vivo, in limited sample volumes. Here we report a technique allowing highly resolved and simultaneous monitoring of pH and blood pigment saturation in minute blood volumes. We equipped a gas diffusion chamber with a broad range fibre optic spectrophotometer and a micro-pH optode and recorded changes of pigment oxygenation along PO2 and pH gradients to test the setup. Oxygen binding parameters derived from measurements in only 15 µl of haemolymph from the cephalopod Octopus vulgaris showed low instrumental error (0.93%) and good agreement with published data. Broad range spectra, each resolving 2048 data points, provided detailed insight into the complex absorbance characteristics of diverse blood types. After consideration of photobleaching and intrinsic fluorescence, pH optodes yielded accurate recordings and resolved a sigmoidal shift of 0.03 pH units in response to changing PO2 from 0-21 kPa. Highly resolved continuous recordings along pH gradients conformed to stepwise measurements at low rates of pH changes. In this study we showed that a diffusion chamber upgraded with a broad range spectrophotometer and an optical pH sensor accurately characterizes oxygen binding with minimal sample consumption and manipulation. We conclude that the modified diffusion chamber is highly suitable for experimental biologists who demand high flexibility, detailed insight into oxygen binding as well as experimental and biological accuracy combined in a single set up.
Resumo:
The Arctic Ocean and Western Antarctic Peninsula (WAP) are the fastest warming regions on the planet and are undergoing rapid climate and ecosystem changes. Until we can fully resolve the coupling between biological and physical processes we cannot predict how warming will influence carbon cycling and ecosystem function and structure in these sensitive and climactically important regions. My dissertation centers on the use of high-resolution measurements of surface dissolved gases, primarily O2 and Ar, as tracers or physical and biological functioning that we measure underway using an optode and Equilibrator Inlet Mass Spectrometry (EIMS). Total O2 measurements are common throughout the historical and autonomous record but are influenced by biological (net metabolic balance) and physical (temperature, salinity, pressure changes, ice melt/freeze, mixing, bubbles and diffusive gas exchange) processes. We use Ar, an inert gas with similar solubility properties to O2, to devolve distinct records of biological (O2/Ar) and physical (Ar) oxygen. These high-resolution measurements that expose intersystem coupling and submesoscale variability were central to studies in the Arctic Ocean, WAP and open Southern Ocean that make up this dissertation.
Key findings of this work include the documentation of under ice and ice-edge blooms and basin scale net sea ice freeze/melt processes in the Arctic Ocean. In the WAP O2 and pCO2 are both biologically driven and net community production (NCP) variability is controlled by Fe and light availability tied to glacial and sea ice meltwater input. Further, we present a feasibility study that shows the ability to use modeled Ar to derive NCP from total O2 records. This approach has the potential to unlock critical carbon flux estimates from historical and autonomous O2 measurements in the global oceans.
Resumo:
Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.
The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.
In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.
I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.
Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.
Resumo:
The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic–biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.
Resumo:
The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of aterials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar16O1H+, and 40Ca16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the nalytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 ìg g-1 and 0.14 ìg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis)samples was achieved using the developed method.
Resumo:
Measurement of marine algal toxins has traditionally focussed on shellfish monitoring while, over the last decade, passive sampling has been introduced as a complementary tool for exploratory studies. Since 2011, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been adopted as the EU reference method (No.15/2011) for detection and quantitation of lipophilic toxins. Traditional LC-MS approaches have been based on low-resolution mass spectrometry (LRMS), however, advances in instrument platforms have led to a heightened interest in the use of high-resolution mass spectrometry (HRMS) for toxin detection. This work describes the use of HRMS in combination with passive sampling as a progressive approach to marine algal toxin surveys. Experiments focused on comparison of LRMS and HRMS for determination of a broad range of toxins in shellfish and passive samplers. Matrix effects are an important issue to address in LC-MS; therefore, this phenomenon was evaluated for mussels (Mytilus galloprovincialis) and passive samplers using LRMS (triple quadrupole) and HRMS (quadrupole time-of-flight and Orbitrap) instruments. Matrix-matched calibration solutions containing okadaic acid and dinophysistoxins, pectenotoxin, azaspiracids, yessotoxins, domoic acid, pinnatoxins, gymnodimine A and 13-desmethyl spirolide C were prepared. Similar matrix effects were observed on all instruments types. Most notably, there was ion enhancement for pectenotoxins, okadaic acid/dinophysistoxins on one hand, and ion suppression for yessotoxins on the other. Interestingly, the ion selected for quantitation of PTX2 also influenced the magnitude of matrix effects, with the sodium adduct typically exhibiting less susceptibility to matrix effects than the ammonium adduct. As expected, mussel as a biological matrix, quantitatively produced significantly more matrix effects than passive sampler extracts, irrespective of toxin. Sample dilution was demonstrated as an effective measure to reduce matrix effects for all compounds, and was found to be particularly useful for the non-targeted approach. Limits of detection and method accuracy were comparable between the systems tested, demonstrating the applicability of HRMS as an effective tool for screening and quantitative analysis. HRMS offers the advantage of untargeted analysis, meaning that datasets can be retrospectively analysed. HRMS (full scan) chromatograms of passive samplers yielded significantly less complex data sets than mussels, and were thus more easily screened for unknowns. Consequently, we recommend the use of HRMS in combination with passive sampling for studies investigating emerging or hitherto uncharacterised toxins.
Resumo:
Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.
Resumo:
At the center of galaxy clusters, a dramatic interplay known as feedback cycle occurs between the hot intracluster medium (ICM) and the active galactic nucleus (AGN) of the central galaxy. The footprints of this interplay are evident from X-ray observations of the ICM, where X-ray cavities and shock fronts are associated with radio lobe emission tracing energetic AGN outbursts. While such jet activity reduces the efficiency of the hot gas to cool to lower temperatures, residual cooling can generate warm and cold gas clouds around the central galaxy. The condensed gas parcels can ultimately reach the core of the galaxy and be accreted by the AGN. This picture is the result of tremendous advances over the last three decades. Yet, a deeper understanding of the details of how the heating–cooling regulation is achieved and maintained is still missing. In this Thesis, we delve into key aspects of the feedback cycle. To this end, we leverage high-resolution (sub-arcsecond), multifrequency observations (mainly X-ray and radio) of several top-level facilities (e.g., Chandra, JVLA, VLBA, LOFAR). First, we investigate which conditions trigger a feedback response to gas cooling, by studying the properties of clusters where feedback is just about to start. Then, we focus on the details of how the AGN–ICM interaction progresses by examining cavity and shock heating in the cluster RBS797, an exemplary case of the jet feedback paradigm. Furthermore, we explore the importance of shock heating and the coupling of distinct jet power regimes (i.e., FRII, FRI and FR0 radio galaxies) to the environment. Ultimately, as heating models rely on the connection between the direct evidence (the jets) and the smoking gun (the X-ray cavities) of feedback, we examine the cases in which these two are dramatically misaligned.
Resumo:
Plackett-Burman experimental design was applied for the robustness assessment of GC×GC-qMS (Comprehensive Two-Dimensional Gas Chromatography with Fast Quadrupolar Mass Spectrometric Detection) in quantitative and qualitative analysis of volatiles compounds from chocolate samples isolated by headspace solid-phase microextraction (HS-SPME). The influence of small changes around the nominal level of six factors deemed as important on peak areas (carrier gas flow rate, modulation period, temperature of ionic source, MS photomultiplier power, injector temperature and interface temperature) and of four factors considered as potentially influential on spectral quality (minimum and maximum limits of the scanned mass ranges, ions source temperature and photomultiplier power). The analytes selected for the study were 2,3,5-trimethylpyrazine, 2-octanone, octanal, 2-pentyl-furan, 2,3,5,6-tetramethylpyrazine, and 2-nonanone e nonanal. The factors pointed out as important on the robustness of the system were photomultiplier power for quantitative analysis and lower limit of mass scanning range for qualitative analysis.
Resumo:
A rapid, sensitive and specific method for quantifying propylthiouracil in human plasma using methylthiouracil as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (ethyl acetate). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS) in negative mode (ES-). Chromatography was performed using a Phenomenex Gemini C18 5μm analytical column (4.6mm×150mm i.d.) and a mobile phase consisting of methanol/water/acetonitrile (40/40/20, v/v/v)+0.1% of formic acid. For propylthiouracil and I.S., the optimized parameters of the declustering potential, collision energy and collision exit potential were -60 (V), -26 (eV) and -5 (V), respectively. The method had a chromatographic run time of 2.5min and a linear calibration curve over the range 20-5000ng/mL. The limit of quantification was 20ng/mL. The stability tests indicated no significant degradation. This HPLC-MS/MS procedure was used to assess the bioequivalence of two propylthiouracil 100mg tablet formulations in healthy volunteers of both sexes in fasted and fed state. The geometric mean and 90% confidence interval CI of Test/Reference percent ratios were, without and with food, respectively: 109.28% (103.63-115.25%) and 115.60% (109.03-122.58%) for Cmax, 103.31% (100.74-105.96%) and 103.40% (101.03-105.84) for AUClast. This method offers advantages over those previously reported, in terms of both a simple liquid-liquid extraction without clean-up procedures, as well as a faster run time (2.5min). The LOQ of 20ng/mL is well suited for pharmacokinetic studies. The assay performance results indicate that the method is precise and accurate enough for the routine determination of the propylthiouracil in human plasma. The test formulation with and without food was bioequivalent to reference formulation. Food administration increased the Tmax and decreased the bioavailability (Cmax and AUC).
Resumo:
Schistosomiasis is a common tropical disease caused by Schistosoma species Schistosomiasis' pathogenesis is known to vary according to the worms' strain. Moreover, high parasitical virulence is directly related to eggs release and granulomatous inflammation in the host's organs. This virulence might be influenced by different classes of molecules, such as lipids. Therefore, better understanding of the metabolic profile of these organisms is necessary, especially for an increased potential of unraveling strain virulence mechanisms and resistance to existing treatments. In this report, direct-infusion electrospray high-resolution mass spectrometry (ESI(+)-HRMS) along with the lipidomic platform were employed to rapidly characterize and differentiate two Brazilian S. mansoni strains (BH and SE) in three stages of their life cycle: eggs, miracidia and cercariae, with samples from experimental animals (Swiss/SPF mice). Furthermore, urine samples of the infected and uninfected mice were analyzed to assess the possibility of direct diagnosis. All samples were differentiated using multivariate data analysis, PCA, which helped electing markers from distinct lipid classes; phospholipids, diacylglycerols and triacylglycerols, for example, clearly presented different intensities in some stages and strains, as well as in urine samples. This indicates that biochemical characterization of S. mansoni may help narrowing-down the investigation of new therapeutic targets according to strain composition and aggressiveness of disease. Interestingly, lipid profile of infected mice urine varies when compared to control samples, indicating that direct diagnosis of schistosomiasis from urine may be feasible.