972 resultados para hereditary motor sensory neuropathy
Resumo:
Burst firing is ubiquitous in nervous systems and has been intensively studied in central pattern generators (CPGs). Previous works have described subtle intraburst spike patterns (IBSPs) that, despite being traditionally neglected for their lack of relation to CPG motor function, were shown to be cell-type specific and sensitive to CPG connectivity. Here we address this matter by investigating how a bursting motor neuron expresses information about other neurons in the network. We performed experiments on the crustacean stomatogastric pyloric CPG, both in control conditions and interacting in real-time with computer model neurons. The sensitivity of postsynaptic to presynaptic IBSPs was inferred by computing their average mutual information along each neuron burst. We found that details of input patterns are nonlinearly and inhomogeneously coded through a single synapse into the fine IBSPs structure of the postsynaptic neuron following burst. In this way, motor neurons are able to use different time scales to convey two types of information simultaneously: muscle contraction (related to bursting rhythm) and the behavior of other CPG neurons (at a much shorter timescale by using IBSPs as information carriers). Moreover, the analysis revealed that the coding mechanism described takes part in a previously unsuspected information pathway from a CPG motor neuron to a nerve that projects to sensory brain areas, thus providing evidence of the general physiological role of information coding through IBSPs in the regulation of neuronal firing patterns in remote circuits by the CNS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Leprosy neuropathy, despite being primarily demyelinating, frequently leads to axonal loss. Neurophysiological examination of the nerves during Type 1 (T1R) and Type 2 reactions (T2R) may give some insight into the pathophysiological mechanisms.Methods: Neurophysiological examinations were performed in 28 ulnar nerves during a clinical trial of steroid treatment effectiveness, 19 patients with T1R and nine with T2R. The nerves were monitored during a period of 6 months; there were eight assessments per nerve, for a total of 224 assessments. Nine neurophysiological parameters were assessed at three sites of the ulnar nerve. The compound motor action potential amplitudes elicited at wrist, elbow and above, as well as the conduction velocity and temporal dispersion across the elbow, were chosen to focus on the changes occurring in the parameters at the elbow tunnel.Results and Conclusion: Neurophysiological changes indicating axonal and demyelinating processes during both T1R and T2R were detected across the elbow. Changes in demyelination, i.e. a Conduction Block, as a primary event present during T2R, occurring as an acute phenomenon, were observed regularly; in T1R Temporal Dispersion, a subacute phenomenon, was seen. During treatment remyelination occurred after both types of reactions.
Resumo:
The purpose of this study was to assess the temporal relationship between pancreas transplant and the development of electrophysiological changes in the sciatic and caudal nerves of alloxan-induced diabetic rats. Nerve conduction studies were performed in diabetic rats subjected to pancreas transplantation at 4, 12, and 24 weeks after diabetes onset, using nondiabetic and untreated diabetic rats as controls. Nerve conduction data were significantly altered in untreated diabetic control rats up to 48 weeks of follow-up in all time points. Rats subjected to pancreas transplantation up to 4 and 12 weeks after diabetes onset had significantly increased motor nerve conduction velocity with improvement of wave amplitude, distal latency, and temporal dispersion of compound muscle action potential in all follow-up periods (P<0.05); these parameters remained abnormal when pancreas transplantation were performed late at 24 weeks. Our results suggest that early pancreas transplant (at 4-12 weeks) may be effective in controlling diabetic neuropathy in this in vivo model.
Resumo:
Nerve regeneration in a sensory nerve was obtained by the application of different techniques: inside-out vein graft (IOVG group) and standard vein graft (SVG group). These techniques provide a good microenvironment for axon regeneration in motor nerves, but their efficiency for regeneration of sensory nerves is controversial. The saphenous nerve was sectioned and repaired by the inside-out and standard vein graft techniques in rats. After 4, 12, and 20 weeks the graft and the distal stump were observed under electron microscopy. In each studied period, the pattern, diameters, and thickness of the myelin sheaths of the regenerated axons were measured in the graft and distal stump. A comparative study about the regenerated nerve fibers by these two different techniques was performed. Regenerated nerve fibers were prominent in both vein grafts 4 weeks after the surgical procedures. On the other hand, in the distal stump, regenerated nerve fibers were observed only from 12 weeks. In both inside-out vein graft and standard vein graft statistical difference was not observed about the diameters and thickness of the myelinated fibers after 20 weeks. On the other hand, the inside-out group had greater regenerated axon number when compared to the standard group. There is a capillary invasion in both graft and distal stump, especially in the IOVG group. The regenerated axons follow these capillaries all the time like satellite microfascicles. After 20 weeks, the diameters of regenerated fibers repaired by the standard vein graft technique were closer to the normal fibers compared to the inside-out vein graft. On the other hand, the pattern of these regenerated axons was better in the IOVG group.
Resumo:
Silent period was evaluated in 20 adult male patients with chronic renal failure undergoing hemodialysis. Readings were obtained by supramaximal stimulus to the median nerve, during maximum isometric effort of the abductor pollicis brevis muscle against resistance. Two types of abnormalities were observed, motor neuron hypoexcitability with elongated silent period, and motor neuron hyperexcitability with reduction or absence of silent period. Some abnormalities are probably linked with dialysis duration, but show no correlation to presence or absence of peripheral neuropathy. The silent period alterations described in this study could possibly correlate with some other clinical feature frequently seen in patients with chronic renal failure such as hypereflexia of the deep tendon reflexes.
Resumo:
Carpal tunnel syndrome (CTS) is the most frequent entrapment neuropathy. In the last decade several papers have been published on epidemiology, clinical aspects, diagnosis, and treatment, but little is known about its natural history. The objective of this work was to study the natural history of CTS syndrome. From 358 patients with clinical and conduction study diagnosis of CTS, 12 cases were identified that had refused surgical treatment, had not used anti-inflammatory medications, and had not undergone orthopaedic procedures, such as immobilization or anaesthetic infiltration. These 12 patients have 20 compromised hands which have been followed up for between 4 and 9 years. In all cases sensory and motor conduction studies were performed on the median nerve, at the beginning and end of follow-up period. Electrical improvement was marked in 5 hands and slight in 3; there was no significant change in 10, and deterioration in 2. As 8 hands (7 patients) showed improved clinical symptoms and conduction studies over several years, this brings the universally accepted procedure of surgical treatment into doubt.
Resumo:
Dyslexic children, besides difficulties in mastering literacy, also show poor postural control that might be related to how sensory cues coming from different sensory channels are integrated into proper motor activity. Therefore, the aim of this study was to examine the relationship between sensory information and body sway, with visual and somatosensory information manipulated independent and concurrently, in dyslexic children. Thirty dyslexic and 30 non-dyslexic children were asked to stand as still as possible inside of a moving room either with eyes closed or open and either lightly touching a moveable surface or not for 60 seconds under five experimental conditions: (1) no vision and no touch; (2) moving room; (3) moving bar; (4) moving room and stationary touch; and (5) stationary room and moving bar. Body sway magnitude and the relationship between room/bar movement and body sway were examined. Results showed that dyslexic children swayed more than non-dyslexic children in all sensory condition. Moreover, in those trials with conflicting vision and touch manipulation, dyslexic children swayed less coherent with the stimulus manipulation compared to non-dyslexic children. Finally, dyslexic children showed higher body sway variability and applied higher force while touching the bar compared to non-dyslexic children. Based upon these results, we can suggest that dyslexic children are able to use visual and somatosensory information to control their posture and use the same underlying neural control processes as non-dyslexic children. However, dyslexic children show poorer performance and more variability while relating visual and somatosensory information and motor action even during a task that does not require an active cognitive and motor involvement. Further, in sensory conflict conditions, dyslexic children showed less coherent and more variable body sway. These results suggest that dyslexic children have difficulties in multisensory integration because they may suffer from integrating sensory cues coming from multiple sources. © 2013 Viana et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O acidente vascular cerebral (AVC) é a terceira maior causa de mortalidade e incapacidade no mundo e a principal causa de mortes no Brasil. Após a lesão isquêmica, pela capacidade limitada do Sistema Nervoso Central (SNC) se regenerar, os déficits funcionais geralmente são incapacitantes e permanentes. A incapacidade de regeneração decorre, dentre outros fatores, do acúmulo de proteoglicanos de sulfato de condroitina (PGSC) no local da lesão, inibindo a plasticidade no microambiente extracelular. A enzima condroitinase ABC (ChABC) tem se mostrado eficiente para degradar os PGSC, proporcionando plasticidade. Esta pesquisa se propõe a avaliar o efeito da remoção de PGSC após uma lesão isquêmica no córtex sensório-motor primário de ratos. Para tal, utilizou-se 20 ratos Wistar, em 4 grupos experimentais, controle e tratado, com tempo de sobrevida de 7 e 14 dias. Induziu-se uma lesão isquêmica através de microinjeções do vasoconstritor ET-1 (Endotelina-1) no córtex sensório-motor, implantou-se um polímero de Etileno vinil acetato saturado com ChABC (tratado) ou BSA (controle). Morfologicamente, avaliamos a área de lesão, que se mostrou sem diferença estatística entre grupo controle 7 dias (média de 1653,8 ± 162,57mm²), tratado 7 dias (média de 2067,3 ± 235,42mm²), controle 14 dias (média de 1267,16 ± 280,6mm²), tratado 14 dias (média de 1323,8 ± 297,05mm²) após lesão; a quantidade de astrócitos, que também se mostrou sem diferença estatística entre grupo controle 7 dias (média de 16,6±4,67 células/campo), tratado 7 (média de 21,07±1,87 células/campo) e controle 14 (média de 17,46±0,80 células/campo), tratado 14 (média de 18,51±2,60 células/campo) dias após lesão; e a expressão de controitin degradado, que qualitativamente foi mais expresso nos ratos tratados 7 e 14 dias após lesão. Comportamentalmente, no teste do cilindro, animais tratados tiveram índice de assimetria menor já em 7 dias após lesão, com diferença significativa entre os grupos. No teste da escada horizontal, os animais tratados tiveram menor diferença intragrupo que os controles. Em 7 dias após lesão, já estavam com o mesmo desempenho funcional que seu pré-cirúrgico. Os dados comportamentais demonstram que a ChABC foi eficaz na melhora do desempenho funcional de maneira precoce, o que significa que a degradação das PGSC abre uma janela plástica na lesão isquêmica cortical, sem influenciar no tamanho da lesão e quantidade de astrócitos na cicatriz glial, porém com melhora do desempenho funcional de maneira precoce. Novos estudos devem ser realizados, associando a ChABC a terapêuticas adjuvantes no tratamento de lesões isquêmicas experimentais.
Resumo:
It has been demonstrated that, on abrupt withdrawal, patients with chronic exposure can experience a number of symptoms indicative of a dependent state. In clinical patients, the earliest to arise and most persistent signal of withdrawal from chronic benzodiazepine (Bzp) treatment is anxiety. In laboratory animals, anxiety-like effects following abrupt interruption of chronic Bzp treatment can also be reproduced. In fact, signs that oscillate from irritability to extreme fear behaviours and seizures have been described already. As anxiety remains one of the most important symptoms of Bzp withdrawal, in this study we evaluated the anxiety levels of rats withdrawn from diazepam. Also studied were the effects on the motor performance and preattentive sensory gating process of rats under diazepam chronic treatment and upon 48-h withdrawal on three animal models of anxiety, the elevated plus-maze (EPM), ultrasonic vocalizations (USV) and startle + prepulse inhibition tests. Data obtained showed an anxiolytic- and anxiogenic-like profile of the chronic intake of and withdrawal from diazepam regimen in the EPM test, 22-KHz USV and startle reflex. Diazepam chronic effects or its withdrawal were ineffective in promoting any alteration in the prepulse inhibition (PPI). However, an increase of PPI was achieved in both sucrose and diazepam pretreated rats on 48-h withdrawal, suggesting a procedural rather than a specific effect of withdrawal on sensory gating processes. It is also possible that the prepulse can function as a conditioned stimulus to informing the delivery of an aversive event, as the auditory startling-eliciting stimulus. All these findings are indicative of a sensitization of the neural substrates of aversion in diazepam withdrawn animals without concomitant changes on the processing of sensory information
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Hypoglycemia is a well recognized cause of acute symptomatic seizures. The fact that hypoglycemia can cause peripheral neuropathy is less appreciated. We describe a case of insulinoma associated peripheral neuropathy. A 17 year-old previously healthy man was referred for investigation of refractory epilepsy. A history of recurrent seizures, slowly progressive weakness of his feet and hands, and weight gain was obtained. Physical examination showed signs of a chronic sensory-motor polyneuropathy. He was diagnosed with insulinoma and primary hyperparathyroidism, characterizing multiple endocrine neoplasia, type 1 syndrome. Cases of insulinoma associated peripheral neuropathy are very rare. The more characteristic clinical picture appears to be distal weakness, worse in the intrinsic hand and feet muscles, and no or mild sensory signs. Peripheral nervous system symptoms may not completely resolve, despite removal of the cause of hyperinsulinism/hypoglycemia and full reversion of central nervous system symptoms. Mechanisms underlying hypoglycemic neuropathy are still poorly understood. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms of Parkinson's disease (PD) rarely have been investigated. Among these, sensory disturbances, including chronic pain (CP), are frequent in these patients. The aim of this study was to evaluate the changes induced by deep brain stimulation in the perception of sensory stimuli, either noxious or innocuous, mediated by small or large nerve fibers. Sensory detection and pain thresholds were assessed in 25 PD patients all in the off-medication condition with the stimulator turned on or off (on- and off-stimulation conditions, respectively). The relationship between the changes induced by surgery on quantitative sensory testing, spontaneous CP, and motor abilities were studied. Quantitative sensory test results obtained in PD patients were compared with those of age-matched healthy subjects. Chronic pain was present in 72% of patients before vs 36% after surgery (P = .019). Compared with healthy subjects, PD patients had an increased sensitivity to innocuous thermal stimuli and mechanical pain, but a reduced sensitivity to innocuous mechanical stimuli. In addition, they had an increased pain rating when painful thermal stimuli were applied, particularly in the off-stimulation condition. In the on-stimulation condition, there was an increased sensitivity to innocuous thermal stimuli but a reduced sensitivity to mechanical or thermal pain. Pain provoked by thermal stimuli was reduced when the stimulator was turned on. Motor improvement positively correlated with changes in warm detection and heat pain thresholds. Subthalamic nucleus deep brain stimulation contributes to relieve pain associated with PD and specifically modulates small fiber-mediated sensations. (C) 2012 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.