962 resultados para heavy-quark effective theory
Resumo:
We search for anomalous production of heavy-flavor quark jets in association with W bosons at the Fermilab Tevatron p(p) over bar Collider in final states in which the heavy-flavor quark content is enhanced by requiring at least one tagged jet in an event. Jets are tagged using one algorithm based on semileptonic decays of b/c hadrons, and another on their lifetimes. We compare e+jets (164 pb(-1)) and mu+jets (145 pb(-1)) channels collected with the D0 detector at root s = 1.96 TeV to expectations from the standard model and set upper limits on anomalous production of such events.
Resumo:
Many-body systems of composite hadrons are characterized by processes that involve the simultaneous presence of hadrons and their constituents. We briefly review several methods that have been devised to study such systems and present a novel method that is based on the ideas of mapping between physical and ideal Fock spaces. The method, known as the Fock-Tani representation, was invented years ago in the context of atomic physics problems and was recently extended to hadronic physics. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, Hermitian Hamiltonians with a clear physical interpretation are obtained. The use of the method in connection with the linked-cluster formalism to describe short-range correlations and quark deconfinement effects in nuclear matter is discussed. As an application of the method, an effective nucleon-nucleon interaction is derived from a constituent quark model and used to obtain the equation of state of nuclear matter in the Hartree-Fock approximation.
Resumo:
We include the Roper excitation of the nucleon in a version of heavy-baryon chiral perturbation theory recently developed for energies around the delta resonance. We find significant improvement in the P(11) channel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the two-alpha-particle (alpha alpha) system in an Effective Field Theory (EFT) for halo-like systems. We propose a power Counting that incorporates the subtle interplay of strong and electromagnetic forces leading to a narrow resonance at an energy of about 0.1 MeV. We investigate the EFT expansion in detail, and compare its results with existing low-energy aa phase shifts and previously determined effective-range parameters. Good description of the data is obtained with a surprising amount of fine-tuning. This scenario can be viewed as an expansion around the limit where, when electromagnetic interactions are turned off, the (8)Be ground state is at threshold and exhibits conformal invariance. We also discuss possible extensions to systems with more than two alpha particles. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We compute an effective action for a composite Higgs boson formed by new fermions belonging to a general technicolor non-Abelian gauge theory, using a quite general expression for the fermionic self-energy that depends on a certain parameter (alpha), that defines the technicolor theory from the extreme walking behavior up to the one with a standard operator product expansion behavior. We discuss the values of the trilinear and quadrilinear scalar couplings. Our calculation spans all the possible physical possibilities for mass and couplings of the composite system. In the case of extreme walking technicolor theories we verify that it is possible to have a composite Higgs boson with a mass as light as the present experimental limit, contrary to the usual expectation of a heavy mass for the composite Higgs boson. In this case we obtain an upper limit for the Higgs boson mass, (M(H)<= O(700) GeV for SU(2)(TC)), and the experimental data on the Higgs boson mass constrain SU(N)(TC) technicolor gauge groups to be smaller than SU(10)(TC).
Resumo:
The ground state masses and binding energies of the nucleon, lambda0, lambdac+ , lambdab0 are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the Qqq composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.
Resumo:
1/N(c) expansion in QCD (with N(c) the number of colors) suggests using a potential from meson sector (e.g., Richardson) for baryons. For light quarks a sigma-field has to be introduced to ensure chiral symmetry breaking (chi-SB). It is found that nuclear matter properties can be used to pin down the chi-SB modeling. All masses, M(N), m-sigma, m-omega, are found to scale with density. The equations are solved self-consistently.
Resumo:
We show that for the pion-nucleon theory the thermal bubble graph is analytic at the origin of the momentum-frequency space, although the internal propagators in the loop have the same mass. This means that, for this theory, the thermal effective potential is uniquely defined. We then examine how a slight modification of the interaction term results in a theory for which the thermal bubble graph displays the usual nonanalyticity at the origin and the thermal effective potential is not uniquely defined.
Resumo:
A bag at temperature (T) with pressure B(T) = B(0)[1 - (T/T(c))4] is shown to be consistent with recent lattice data on the pi and the rho mesons. The limiting temperature, T(l), of the pion bag from the Bekenstein entropy bound is lower than that of other mesons. This agrees with the thermal distribution of pi, K and the rho in heavy ion collisions, which (unlike proton-nucleus or pp data) show a marked difference in T of pion and other mesons in the mid-rapidity region.
Resumo:
The use of an effective surface charge density has allowed the Gouy-Chapman (CC) theory to explain surface potential isotherms of Langmuir monolayers of dioctadecyldimethylammonium bromide (DODAB). The effective surface charge density of DODAB monolayer increases with the electronegativity of the counterions in the subphase. The pressure-area isotherms indicate a very condensed monolayer for DODAB spread on an I--containing subphase, which exhibits the lowest surface charge density, whereas the monolayer on a F-containing subphase is extremely expanded owing to the high surface charge density or electrostatic repulsion between headgroups. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
Nonlocal interactions are an intrinsically quantum phenomenon. In this work we point out that, in the context of heavy ions, such interactions can be studied through the refractive elastic scattering of these systems at intermediate energies. We show that most of the observed energy dependence of the local equivalent bare potential arises from the exchange nonlocality. The nonlocality parameter extracted from the data was found to be very close to the one obtained from folding models. The effective mass of the colliding, heavy-ion, system was found to be close to the nucleon effective mass in nuclear matter.
Resumo:
Using the Cornwall-Jackiw-Tomboulis effective potential for composite operators we compute the QCD vacuum energy as a function of the dynamical quark and gluon propagators, which are related to their respective condensâtes as predicted by the operator product expansion. The identification of this result to the vacuum energy obtained from the trace of the energy-momentum tensor allows us to study the gluon self-energy, verifying that it is fairly represented in the ultraviolet by the asymptotic behavior predicted by the operator product expansion, and in the infrared it is frozen at its asymptotic value at one scale of the order of the dynamical gluon mass. We also discuss the implications of this identity for heavy and light quarks. For heavy quarks we recover, through the vacuum energy calculation, the relation nij{filif)-îi(asl'n)GlivGllv obtained many years ago with QCD sum rules. ©2000 The American Physical Society.