988 resultados para heat-polymerized acrylic resin
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
During microwave disinfection, the dentures are exposed to water at high temperature and this may affect the bond between the denture teeth and the acrylic resin from which dentures are made. In this study, a shear test was used to evaluate the effect of microwave disinfection (650W/6 min) on the bond strength of two types of denture teeth to three acrylic resins, with different polymerization methods. The specimens were submitted to the shear tests (0.5 mm/min) after: immersion in water (37 degrees C) for 48 h or 8 days (controls); two or seven cycles of microwave disinfection (test groups). Data (MPa) were analyzed using three-way ANOVA and Tukey HSD test (alpha = 0.05). Microwave disinfection did not adversely affect the bond strength of all tested materials with the exception of QC-20 bonded to SR Vivodent PE, for which a significant reduction was recorded after seven cycles of irradiation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Statement of problem. Adverse reactions to the materials used for the fabrication and reline of removable denture bases have been observed.Purpose. The purpose of this study was to systematically review the published literature on the cytotoxicity of denture base and hard reline materials.Material and methods. MEDLINE via PubMed, Google Scholar, and Scopus databases for the period January 1979 to December 2009 were searched with the following key words: (biocompatibility OR cytotoxic* OR allergy OR burning mouth OR cell culture techniques) and (acrylic resins OR denture OR monomer OR relin* OR denture liners). The inclusion criteria included in vitro studies using either animal or human cells, in which the cytotoxicity of the denture base and hard chairside reline resins was tested. Studies of resilient lining materials and those that evaluated other parameters such as genotoxicity and mutagenicity were excluded. Articles published in the English language and in peer-reviewed journals focusing on the cytotoxicity of these materials were reviewed.Results. A total of 1443 articles were identified through the search. From these, 20 studies were judged to meet the selection criteria and were included in the review. In the majority of the studies, continuous cell lines were exposed to eluates of specimens made from the materials, and mitochondrial activity was used to estimate cell viability. The tested acrylic resins were grouped according to 5 major categories: (1) heat-polymerized; (2) microwave-polymerized; (3) autopolymerizing; (4) light-polymerized; and (5) hard chairside reliners.Conclusions. This review provided some evidence that the heat-polymerized resins showed lower cytotoxic effects than autopolymerizing denture base acrylic resins and light or dual polymerized reline resins. However, because of the large number of variables in the reviewed literature, a definitive conclusion could not be drawn. (J Prosthet Dent 2012;107:114-127)
Resumo:
The aim of this study was to evaluate the influence of silica coating and 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based primer applications upon the bonding durability of a MDP-based resin cement to a yttrium stabilized tetragonal zirconia (Y-TZP) ceramic. Ninety-six Y-TZP tabs were embedded in an acrylic resin (free surface for adhesion: 5 x 5 mm(2)), ground finished and randomly divided into four groups (N = 24) according to the ceramic surface conditioning: (1) cleaning with isopropanol (ALC); (2) ALC + phosphoric acid etching + MDP-based primer application (MDP-primer); (3) silica coating + 3-methacryloyloxypropyl trimethoxysilane (MPS)-based coupling agent application (SiO(2) + MPS-Sil); and (4) SiO(2) + MDP-primer. The MDP-based resin cement was applied on the treated surface using a cylindrical mold (diameter=3 mm). Half of the specimens from each surface conditioning were stored in distilled water (37 C, 24 h) before testing. Another half of the specimens were stored (90 days) and thermo-cycled (12,000x) during this period (90d/TC) before testing. A shear bond strength (SBS) test was performed at a crosshead speed of 0.5 mm/min. Two factors composed the experimental design: ceramic conditioning strategy (in four levels) and storage condition (in two levels), totaling eight groups. After 90d/TC (Tukey; p < 0.05), SiO(2) + MDP-primer (24.40 MPa) promoted the highest SBS. The ALC and MDP-primer groups debonded spontaneously during 90d/TC. Bonding values were higher and more stable in the SiO2 groups. The use of MDP-primer after silica coating increased the bond strength. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part 8: Appl Biomater 95B: 69-74, 2010.
Resumo:
Objective: the purpose of this study was to evaluate the effect of two post-polymerisation treatments and different cycles of polymerisation on the cytotoxicity of two denture base resins.Materials and methods: the resins tested were Lucitone 550 and QC 20. Discs of resins were fabricated following the manufacturer's instructions. Lucitone 550 was processed by long cycle or short cycle. The resin QC 20 was processed by reverse cycle or normal cycle. The specimens were divided into groups: (i) post-polymerised in microwave for 3 min at 500 W; (ii) post-polymerised in water-bath at 55 degrees C for 60 min and (iii) without post-polymerisation. Eluates were prepared by placing three discs into a sterile glass vial with 9 ml of Eagle's medium and incubated at 37 degrees C for 24 hours. L929 cells were seeded into 96 3 well culture plates and DNA synthesis was assessed by H-thymidine incorporation assay.Results: the results were submitted to two-way ANOVA and Tukey HSD test. QC 20 specimens polymerised by the normal cycle and submitted to microwave post-polymerisation were graded as moderately cytotoxic. Similar results were observed for Lucitone 550 processed by long cycle without post-polymerisation. The other experimental groups were graded as not cytotoxic. After water-bath post-polymerisation, specimens of Lucitone 550 processed by long cycle produced significantly lower inhibition of DNA synthesis than the other groups.Conclusion: the long cycle increased the cytotoxicity of Lucitone 550 and water-bath post-polymerisation reduced the cytotoxicity of Lucitone 550 processed by long cycle.
Resumo:
Statement of problem. Microwave postpolymerization has been Suggested as a method to improve the mechanical strength of repaired denture base materials. However, the effect of microwave heating oil the flexural strength of the autopolymerizing denture reline resins has not been investigated.Purpose. This study analyzed the effect of microwave postpolymerization on the flexural strength of 4 autopolymerizing reline resins (Duraliner II, Kooliner, Ufi Gel Hard, and Tokuso Rebase Fast) and 1 heat-polymerized resin (Lucitone 550).Material and methods. For each material, 80 specimens (64 X 10 X 3.3 mm) were polymerized according to the manufacturer's instructions and divided into 10 groups (n = 8). Control group specimens remained as processed. Before testing, the specimens were Subjected to postpolymerization in a microwave oven using different power (500, 5,50, or 650 W) and time (3, 4, or 5 Minutes) settings. Load measurements (newtons) were made at a crosshead speed of 5 mm/min using a 3-point bending device with a span of 50 mill. The flexural strength values were calculated in MPa. Data analyses included 3-way and 2-way analysis of variance and the Tukey Honestly Significant Difference test (alpha=.05).Results. The flexural strengths of resins Duraliner 11 and Kooliner were significantly increased (P=.0015 and P=.0046, respectively) with the application of microwave irradiation using different time/power combinations. The materials Lucitone 550, Tokuso Rebase Fast, and Ufi Gel Hard demonstrated no significant strength improvement compared to the corresponding control. Only after microwave postpolymerization irradiation for 3 minutes at 550 W did Lucitione 550 show significantly higher flexural strength than Tokuso Rebase Fast and Ufi Gel Hard relining resins.Conclusion. Microwave postpolymerization irradiation can be an effective method for increasing the flexural strength of Duraliner II (at 650 W) and Kooliner (at 550 W and 650 W for 5 minutes).
Resumo:
Samples of water based commercial acrylic resin paints were spread in a film form on slides, dried at room temperature and exposed to solar radiation for up to eight months.The characterization and quantification of resins and charges in the white paint emulsion were carried out for the thermal decomposition. Besides this, X-ray diffractometry was used to identify CaCO3 as charge and TiO2 (rutile phase) as pigment.It was observed through thermal techniques similar behavior to the samples even though with varied exposure time.Kinetic studies of the samples allowed to obtain the activation energy (Ea) and Arrhenius parameters (A) to the thermal decomposition of acrylic resin to three different commercial emulsion (called P-1, P-2, P-3) through non-isothermal procedures. The values of E. varied regarding the exposition time (eight months) and solar radiation from 173 to 197 U mol(-1) (P-1 sample), from 175 to 226 W mol(-1) (P-2 sample) and 206 to 197 kJ mol(-1) (P-3 sample).Kinetic Compensation Effect (KCE) observed for samples P-2 and P-3 indicate acrylic resin s present in these may be similar in nature. This aspect could be observed by a small difference in the thermal behavior of the TG curves from P I to P-2 and P-3 sample.The simulated kinetic model to all the samples was the autocatalytic estdk Berggreen.
Resumo:
Purpose: The purpose of the current study was to evaluate different approaches for bonding composite to the surface of yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics.Methods: One hundred Y-TZP blocks were embedded in acrylic resin, had the free surface polished, and were randomly divided into 10 groups (n=10). The tested repair approaches included four surface treatments: tribochemical silica coating (TBS), methacryloxydecyldihidrogenphosphate (MDP)-containing primer/silane, sandblasting, and metal/zirconia primer. Alcohol cleaning was used as a "no treatment" control. Surface treatment was followed by the application (or lack thereof) of an MDP-containing resin cement liner. Subsequently, a composite resin was applied to the ceramic surface using a cylindrical mold (4-mm diameter). After aging for 60 days in water storage, including 6000 thermal cycles, the specimens were submitted to a shear test. Analysis of variance and the Tukey test were used for statistical analyses (alpha=0.05).Results: Surface treatment was a statistically significant factor (F=85.42; p<0.0001). The application of the MDP-containing liner had no effect on bond strength (p=0.1017). TBS was the only treatment that had a significantly positive effect on bond strength after aging.Conclusion: Considering the evaluated approaches, TBS seems to be the best surface treatment for Y-TZP composite repairs. The use of an MDP-containing liner between the composite and Y-TZP surfaces is not effective.
Resumo:
Purpose: This study evaluated the adhesive quality of simplified self-adhesive and conventional resin cements to Y-TZP in dry and aged conditions. Methods: Y-TZP ceramic blocks (N=192) (5 x 5 x 2 mm) were embedded in acrylic resin and randomly divided into two groups, based on surface conditioning: 96% isopropanol or chairside tribochemical silica coating and silanization. Conditioned ceramics were divided into four groups to receive the resin cements (Panavia F 2.0, Variolink II, RelyX U100 and Maxcem). After 24 hours, half of the specimens (n=12) from each group were submitted to shear bond strength testing (0.5 nun/minute). The remaining specimens were tested after 90 days of water storage at 37 degrees C and thermocycling (12,000x, 5 degrees C-55 degrees C). Failure types were then assessed. The data were analyzed using three-way ANOVA and the Tukey's test (alpha=0.05). Results: Significant effects of ceramic conditioning, cement type and storage conditions were observed (p<0.0001). The groups cleaned using alcohol only showed low bond strength values in dry conditions and the bond strength was reduced dramatically after aging. Groups conditioned using silica coating and silanization showed higher bond strengths both in dry and aged conditions. A high number of specimens failed prematurely prior to testing when they were cleaned using 96% isopropanol. Conclusion: Overall, silica coating and silanization showed higher, stable bond strengths with and without aging. The durability of resin-ceramic adhesion varied, depending on the adhesive cement type.