935 resultados para heat shock protein 90


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Heat shock factor binding protein (HSBP) was originally discovered in a yeast two-hybrid screen as an interacting partner of heat shock factor (HSF). It appears to be conserved in all eukaryotes studied so far, with yeast being the only exception. Cell biological analysis of HSBP in mammals suggests its role as a negative regulator of heat shock response as it appears to interact with HSF only during the recovery phase following exposure to heat stress. While the identification of HSF in the malaria parasite is still eluding biologists, this study for the first time, reports the presence of a homologue of HSBP in Plasmodium falciparum. Methods: PfHSBP was cloned and purified as his-tag fusion protein. CD (Circular dichroism) spectroscopy was performed to predict the secondary structure. Immunoblots and immunofluorescence approaches were used to study expression and localization of HSBP in P. falciparum. Cellular fractionation was performed to examine subcellular distribution of PfHSBP. Immunoprecipitation was carried out to identify HSBP interacting partner in P. falciparum. Results: PfHSBP is a conserved protein with a high helical content and has a propensity to form homo-oligomers. PfHSBP was cloned, expressed and purified. The in vivo protein expression profile shows maximal expression in trophozoites. The protein was found to exist in oligomeric form as trimer and hexamer. PfHSBP is predominantly localized in the parasite cytosol, however, upon heat shock, it translocates to the nucleus. This study also reports the interaction of PfHSBP with PfHSP70-1 in the cytoplasm of the parasite. Conclusions: This study emphasizes the structural and biochemical conservation of PfHSBP with its mammalian counterpart and highlights its potential role in regulation of heat shock response in the malaria parasite. Analysis of HSBP may be an important step towards identification of the transcription factor regulating the heat shock response in P. falciparum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The META cluster of Leishmania amazonensis contains both META1 and META2 genes, which are upregulated in metacyclic promastigotes and encode proteins containing the META domain. Previous studies defined META2 as a 48.0-kDa protein, which is conserved in other Leishmania species and in Trypanosoma brucei. In this work, we demonstrate that META2 protein expression is regulated during the Leishmania life cycle but constitutive in T. brucei. META2 protein is present in the cytoplasm and flagellum of L amazonensis promastigotes. Leishmania META2-null replacement mutants are more sensitive to oxidative stress and, upon heat shock, assume rounded morphology with shortened flagella. The increased susceptibility of null parasites to heat shock is reversed by extra-chromosomal expression of the META2 gene. Defective Leishmania promastigotes exhibit decreased ability to survive in macrophages. By contrast, META2 expression is decreased by 80% in RNAi-induced T. brucei bloodstream forms with no measurable effect on survival or resistance to heat shock. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the origin and evolution of gene families is critical to our understanding of the evolution of protein function. To gain a detailed understanding of the evolution of the small heat shock proteins (sHSPs) in plants, we have examined the evolutionary history of the chloroplast (CP)-localized sHSPs. Previously, these nuclear-encoded CP proteins had been identified only from angiosperms. This study reveals the presence of the CP sHSPs in a moss, Funaria hygrometrica. Two clones for CP sHSPs were isolated from a F. hygrometrica heat shock cDNA library that represent two distinct CP sHSP genes. Our analysis of the CP sHSPs reveals unexpected evolutionary relationships and patterns of sequence conservation. Phylogenetic analysis of the CP sHSPs with other plant CP sHSPs and eukaryotic, archaeal, and bacterial sHSPs shows that the CP sHSPs are not closely related to the cyanobacterial sHSPs. Thus, they most likely evolved via gene duplication from a nuclear-encoded cytosolic sHSP and not via gene transfer from the CP endosymbiont. Previous sequence analysis had shown that all angiosperm CP sHSPs possess a methionine-rich region in the N-terminal domain. The primary sequence of this region is not highly conserved in the F. hygrometrica CP sHSPs. This lack of sequence conservation indicates that sometime in land plant evolution, after the divergence of mosses from the common ancestor of angiosperms but before the monocot–dicot divergence, there was a change in the selective constraints acting on the CP sHSPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation of misfolded proteins in the cell at high temperature may cause entry into a nonproliferating, heat-shocked state. The imino acid analog azetidine 2-carboxylic acid (AZC) is incorporated into cellular protein competitively with proline and can misfold proteins into which it is incorporated. AZC addition to budding yeast cells at concentrations sufficient to inhibit proliferation selectively activates heat shock factor (HSF). We find that AZC treatment fails to cause accumulation of glycogen and trehalose (Msn2/4-dependent processes) or to induce thermotolerance (a protein kinase C-dependent process). However, AZC-arrested cells can accumulate glycogen and trehalose and can acquire thermotolerance in response to a subsequent heat shock. We find that AZC treatment arrests cells in a viable state and that this arrest is reversible. We find that cells at high temperature or cells deficient in the ubiquitin-conjugating enzymes Ubc4 and Ubc5 are hypersensitive to AZC-induced proliferation arrest. We find that AZC treatment mimics temperature up-shift in arresting cells in G1 and represses expression of CLN1 and CLN2. Mutants with reduced G1 cyclin-Cdc28 activity are hypersensitive to AZC-induced proliferation arrest. Expression of the hyperstable Cln3–2 protein prevents G1 arrest upon AZC treatment and temperature up-shift. Finally, we find that the EXA3–1 mutation, encoding a defective HSF, prevents efficient G1 arrest in response to both temperature up-shift and AZC treatment. We conclude that nontoxic levels of misfolded proteins (induced by AZC treatment or by high temperature) selectively activate HSF, which is required for subsequent G1 arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RAC protein kinase (RAC-PK), a serine/threonine protein kinase containing a pleckstrin homology (PH) domain, was activated by cellular stress such as heat shock and hyperosmolarity. Wortmannin, which is known as a potent inhibitor of phosphatidylinositol 3-kinase and normally inhibits growth factor-induced activation of RAC-PK, did not suppress heat-shock induced activation of RAC-PK, indicating that this stress-induced activation of the kinase is not mediated by phosphatidylinositol 3-kinase. The PH domain was indispensable for stress-induced activation of RAC PK. In heat-treated cells, PKC delta, a member of the protein kinase C family, was found to associate with the PH domain of RAC-PK. This PKC subspecies was phosphorylated in vitro by RAC-PK. The results suggest that RAC-PK may play a role in the cellular response to stress through its PH domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An essential stage in endocytic coated vesicle recycling is the dissociation of clathrin from the vesicle coat by the molecular chaperone, 70-kDa heat-shock cognate protein (Hsc70), and the J-domain-containing protein, auxilin, in an ATP-dependent process. We present a detailed mechanistic analysis of clathrin disassembly catalyzed by Hsc70 and auxilin, using loss of perpendicular light scattering to monitor the process. We report that a single auxilin per clathrin triskelion is required for maximal rate of disassembly, that ATP is hydrolyzed at the same rate that disassembly occurs, and that three ATP molecules are hydrolyzed per clathrin triskelion released. Stopped-flow measurements revealed a lag phase in which the scattering intensity increased owing to association of Hsc70 with clathrin cages followed by serial rounds of ATP hydrolysis prior to triskelion removal. Global fit of stopped-flow data to several physically plausible mechanisms showed the best fit to a model in which sequential hydrolysis of three separate ATP molecules is required for the eventual release of a triskelion from the clathrin-auxilin cage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum and synovial antibody reactivities of caprine arthritis encephalitis virus (CAEV) infected goats were assessed by Western blotting against purified CAEV antigen and the greatest intensity of reactivity in the serum of arthritic goats was to the gp45 transmembrane protein (TM). The extracytoplasmic domain of the TM gene was cloned into a pGEX vector and expressed in Escherichia coil as a glutathione S transferase fusion protein (GST-TM). This clone was found to be 90.5 and 89.2% homologous to published sequences of CAEV TM gene. Serum of 16 goats naturally infected with CAEV were examined by Western blotting for reactivity to the fusion protein. Antibody reactivity to the GST-TM correlated with clinically detectable arthritis (R = 0.642, P ≤ 0.007). The hypothesis that the immune response to the envelope proteins of the CAEV contributes to the severity of arthritis in goats naturally infected with CAEV via epitope mimicry was tested. Antibodies from 5 CAEV infected goats were affinity purified against the GST-TM fusion protein and tested for cross-reactivity with a series of goat synovial extracts and proteogylcans. No serum antibody response or cross-reactivity of affinity purified antibodies could be detected. Peptides of the CAEV SU that were predicted to be linear epitopes and a similar heat shock protein 83 (HSP) peptide identified by database searching, were synthesized and tested for reactivity in CAEV goats using ELISA, in vitro lymphocyte proliferation and delayed type hypersensitivity (DTH) assays. Peripheral blood lymphocytes from 10 of 17 goats with long term natural CAEV infections proliferated in vitro in response to CAEV and in vivo 3 of 7 CAEV infected goats had a DTH reaction to CAEV antigen. However, none of the peptides elicited significant cell mediated immune responses from CAEV infected goats. No antibody reactivity to the SU peptides or HSP peptide was found. We observed that the antibody reactivity to the CAEV TM protein associated with severity of arthritis however epitope mimicry by the envelope proteins of CAEV is unlikely to be involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal sensitivity and heat shock response of the different races of the mulberry silkworm Bombyx mori have been analysed. The multivoltine race, strains C. Nichi and Pure Mysore showed better survival rates than the bivoltine race, strain NB4D2 exposed to 41 degrees C and above. In general, the fifth instar larvae and the pupae exhibited maximum tolerance compared to the early larval instars, adult moths or the eggs. Exposure up to 39 degrees C for 1 or 2 h was tolerated equally whereas temperatures above 43 degrees C proved to be lethal for all. Treatment of larvae at 41 degrees C for Ih resulted in a variety of physiological alterations including increased heart beat rates, differential haemocyte counts, enlargement of granulocytes and the presence of additional protein species in the tissues and haemolymph. The appearance of a 93 kDa protein in the haemolymph, fat bodies and cuticle, following the heat shocking of larvae in vivo was a characteristic feature in all the three strains examined although the kinetics of their appearance itself was different. In haemolymph, the protein appeared immediately in response to heat shock in C. Nichi reaching the maximal levels in 2-4 h whereas its presence was noticeable only after 2-4 h recovery time in Pure Mysore and bivoltine races. The fat body from both C. Nichi and NB4D2 showed the presence of 93 kDa, 89 kDa and 70 kDa proteins on heat shock. The haemocytes, on the other hand, expressed only a 70 kDa protein consequent to heat shock. The 93 kDa protein in the haemolymph, therefore could have arisen from some other tissue, possibly the fat body. The 93 kDa protein was detected after heat shock in pupae and adult moths as well, although the presence of an additional (56 kDa) protein was also apparent in the adults. The presence of 46 kDa and 28 kDa bands in addition to the 93 kDa band in the cuticular proteins immediately following heat shock was clearly discernible. The 70 kDa band did not show much changes in the cuticular proteins on heat shock. In contrast to the changes in protein profiles seen in tissues and haemolymph following heat shock in vivo, the heat treatment of isolated fat body or haemolymph in vitro resulted in protein degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosome manipulation for commercially valuable marine animals plays an important role in aquaculture. The special reproductive characteristics of shrimp make it difficult to control fertilization and synchronize egg development, so research on chromosome manipulation in shrimp has proceeded very slowly. In the present study, triploid shrimp Fenneropenaeus chinensis were induced by heat shocks and the optimal-inducing condition was screened at different spawning temperatures. Level of triploid induction for each treatment was evaluated by flow cytometry at nauplius stage. The highest level of triploid induction reached to more than 90%. Starting time for each treatment was very crucial for triploid induction in shrimp. One optimal treatment condition for triploid induction was heat shock (29-32 degreesC), starting at 18-20 min for duration of 10 min. These conditions varied depending on the temperature at spawning. Triploid level at embryo stage and nauplius stage was not different, suggesting the same hatching rate between diploids and triploids. Heat shock is a very effective way to induce triploids in this species, and can be easily used on large scale without any harmful effect on the environment as compared with chemical treatment. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Breast cancer is a heterogeneous disease. Predictive biological markers (BM) of responsiveness to therapy need to be identified. Evaluation of BM is mainly done at the primary site. However, in the adjuvant therapy of breast cancer, the main goal is control of micrometastases. It is still unknown whether heterogeneity in the expression of BM between the primary site and its micrometastases exists. OBJECTIVE: To evaluate the expression of some BM with potential predictive value from the primary breast cancer site and metastatic ipsilateral axillary lymph nodes. PATIENTS AND METHODS: Focality (percentage of positive cells) and intensity staining scores were evaluated for each marker. Freshly cut sections (4 microm) from embedded blocks of breast cancer fixed in formalin or bouin were put onto superfrost slides (Menzel-Gläser). Protein expression was evaluated immunohistochemically (IHC) using monoclonal antibodies against: topo II-alpha (clone KiS1, 1 microg/ml, Roche) with a trypsine pre-treatment (P); HSP27 (clone G3.1, 1/60, Biogenex), HSP70 (clone BRM.22, 1/80, Biogenex) and HER2 (clone CB11, 1/40, Novocastra; without P); p53 (clone D07, 1/750, Dako) and bcl-2 (clone 124, 1/60, Dako) with citrate buffer as P. RESULTS: Overall, the percentage of discordant marker status in the primary tumour and its metastatic lymph nodes was 2% for HER2, 6% for p53, 15% for bcl-2, 19% for topoisomerase II-alpha, 24% for HSP27 and 30% for HSP70. For the subgroup of patients with positive BM in the primary tumour, the percentage of discordance was 6% for HER2, 7% for p53, 14% for bcl-2, 19% for HSP70, 21% for topoisomerase II-alpha and 36% for HSP27. For the subgroup of patients with positive BM in the lymph nodes, the percentage of discordance was 9% for bcl-2, 15% for HER2 and p53, 21% for topoisomerase II-alpha, 22% for HSP27 and 25% for HSP70. CONCLUSIONS: 1) No biological marker had 100% concordant results. 2) Although some discordant cases might be explained by the limitations of the IHC technique, future studies aiming to evaluate the predictive value of BM in the adjuvant therapy of breast cancer should take into account a possible difference in BM expression between the primary and the metastatic sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few studies have analysed the antibody response during intravesical BCG immunotherapy for superficial bladder cancer. We have examined the evolution in serum antibody response against several heat shock proteins (hsp), including the recombinant mycobacterial hsp65 and the native protein P64 from BCG, GroEL from Escherichia coli (hsp60 family), recombinant mycobacterial hsp70 and the E. coli DnaK (hsp70 family), against purified protein derivative of tuberculin (PPD) and the AG85 complex of Mycobacterium bovis BCG, as well as against tetanus toxoid in 42 patients with a superficial bladder tumour, 28 treated with six intravesical BCG instillations and 14 patients used as controls. We also analysed the lymphoproliferative response of peripheral blood mononuclear cells against PPD in this population. Data of antibody responses at 6 weeks post BCG were available in all 28 patients, and at 4 month follow up in 17 patients. All patients who demonstrated a significant increase in IgC antibodies against PPD at 4 months follow up had a significant increase already at 6 weeks of follow up. In contrast, IgG antibodies against hsp increased significantly from 6 weeks to 4 months post- treatment. A significant increase in IgG antibodies against PPD, hsp65, P64, GroEL, and hsp70 at 4 months follow up was observed in 10/17, 8/17, 10/17, 4/17 and 8/17 patients. Native P64 protein elicited a higher antibody response than recombinant mycobacterial hsp65. No increase in antibody response was observed against Dnak from E. coli, against AG85 or tetanus toxoid after BCG therapy. An increase in IgG antibodies against P64 at 4 months follow up compared with pretreatment values was found to be a significant predictor of tumour recurrence (P < 0.01). Further studies with a larger number of patients are needed to confirm the value of the antibody response against P64 as a clinical independent prognostic factor.