970 resultados para heart tissue


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been demonstrated previously that the mammalian heart cannot sustain physiologic levels of pressure-volume work if ketone bodies are the only substrates for respiration. In order to determine the metabolic derangement responsible for contractile failure in hearts utilizing ketone bodies, rat hearts were prefused at a near-physiologic workload in a working heart apparatus with acetoacetate and competing or alternate substrates including glucose, lactate, pyruvate, propionate, leucine, isoleucine, valine and acetate. While the pressure-volume work for hearts utilizing glucose was stable for 60 minutes of perfusion, performance fell by 30 minutes for hearts oxidizing acetoacetate as the sole substrate. The tissue content of 2-oxoglutarate and its transamination product, glutamate, were elevated in hearts utilizing acetoacetate while succinyl-CoA was decreased suggesting impaired flux through the citric acid cycle at the level of 2-oxoglutarate dehydrogenase. Further studies indicated that the inhibition of 2-oxoglutarate dehydrogenase developed prior to the onset of contractile failure and that the inhibition of the enzyme may be related to sequestration of the required cofactor, coenzyme A, as the thioesters acetoacetyl-CoA and acetyl-CoA. The contractile failure was not observed when glucose, lactate, pyruvate, propionate, valine or isoleucine were present together with acetoacetate, but the addition of acetate or leucine to acetoacetate did not improve performance indicating that improved performance is not mediated through the provision of additional acetyl-CoA. Furthermore, addition of competing substrates that improved function did not relieve the inhibition of 2-oxoglutarate dehydrogenase and actually resulted in the further accumulation of citric acid cycle intermediates "upstream" of 2-oxoglutarate dehydrogenase (2-oxoglutarate, glutamate, citrate and malate). Studies with (1-$\sp{14}$C) pyruvate indicate that the utilization of ketone bodies is associated with activation of NADP$\sp+$dependent malic enzyme and enrichment of the C4 pool of the citric acid cycle. The results suggest that contractile failure induced by ketone bodies in rat heart results from inhibition of 2-oxoglutarate dehydrogenase and that reversal of contractile failure is dissociated from relief of the inhibition, but rather is due to the entry of carbon units into the citric acid cycle as compounds other than acetyl-CoA. This mechanism of enrichment (anaplerosis) provides oxaloacetate for condensation with acetyl-CoA derived from ketone bodies allowing continued energy production by sustaining flux through a span of the citric acid cycle up to the point of inhibition at 2-oxoglutarate dehydrogenase for energy production thereby producing the reducing equivalents necessary to sustain oxidative phosphorylation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constant shortage of available organs is a major obstacle and limiting factor in heart transplantation; the discrepancy between the number of donors and potential recipients leads to waiting-list mortality of 10-12% per year in Europe and the USA. If adopted for heart transplantation, donation after circulatory determination of death (DCDD) would be expected to improve the availability of organs substantially for both adults and children. With DCDD, however, hearts to be transplanted undergo a period of warm ischaemia before procurement, which is of particular concern because tissue damage occurs rapidly and might be sufficient to preclude transplantation. Nonetheless, the heart is able to withstand limited periods of warm ischaemia, which could provide a window of opportunity for DCDD. Development of clinical approaches specifically for DCDD is critical for the exploitation of these organs, because current practices for donor heart procurement, evaluation, and storage have been optimized for conventional donation after brain death, without consideration of warm ischaemia before organ procurement. Establishment of clinical protocols and ethical and legal frameworks for DCDD of other organs is underway. This Review provides a timely evaluation of the potential for DCDD in heart transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain- and loss-of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific VEGF-B transgene induced an expanded coronary arterial tree and reprogramming of cardiomyocyte metabolism. This was associated with protection against myocardial infarction and preservation of mitochondrial complex I function upon ischemia-reperfusion. VEGF-B increased VEGF signals via VEGF receptor-2 to activate Erk1/2, which resulted in vascular growth. Akt and mTORC1 pathways were upregulated and AMPK downregulated, readjusting cardiomyocyte metabolic pathways to favor glucose oxidation and macromolecular biosynthesis. However, contrasting with a previous theory, there was no difference in fatty acid uptake by the heart between the VEGF-B transgenic, gene-targeted or wildtype rats. Importantly, we also show that VEGF-B expression is reduced in human heart disease. Our data indicate that VEGF-B could be used to increase the coronary vasculature and to reprogram myocardial metabolism to improve cardiac function in ischemic heart disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Definitions of shock and resuscitation endpoints traditionally focus on blood pressures and cardiac output. This carries a high risk of overemphasizing systemic hemodynamics at the cost of tissue perfusion. In line with novel shock definitions and evidence of the lack of a correlation between macro- and microcirculation in shock, we recommend that macrocirculatory resuscitation endpoints, particularly arterial and central venous pressure as well as cardiac output, be reconsidered. In this viewpoint article, we propose a three-step approach of resuscitation endpoints in shock of all origins. This approach targets only a minimum individual and context-sensitive mean arterial blood pressure (for example, 45 to 50 mm Hg) to preserve heart and brain perfusion. Further resuscitation is exclusively guided by endpoints of tissue perfusion irrespectively of the presence of arterial hypotension ('permissive hypotension'). Finally, optimization of individual tissue (for example, renal) perfusion is targeted. Prospective clinical studies are necessary to confirm the postulated benefits of targeting these resuscitation endpoints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 7-year-old male intact Rottweiler was presented with a 1-week history of lethargy, anorexia, vomiting and multiple syncopal events. The results of the clinical examination and electrocardiography were consistent with a third degree atrioventricular block and an intermittent accelerated idioventricular rhythm. Haematology, serum biochemistry, serology for Borrelia burgdorferi, blood culture, total T4, thoracic radiography and echocardiography did not reveal the cause of the arrhythmia. Response to medical treatment with isoproterenol was poor. Pacemaker placement was declined by the owners and the dog was euthanized at their request. Histopathological examination of the heart revealed a chemodectoma at the base of the heart. There was no neoplastic infiltration of the conduction tissue. Potential mechanisms explaining the association of the arrhythmias and the tumour, such as vagal stimulation and neuroendocrine factors are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Recently, an MRI quantification sequence has been developed which can be used to acquire T1- and T2-relaxation times as well as proton density (PD) values. Those three quantitative values can be used to describe soft tissue in an objective manner. The purpose of this study was to investigate the applicability of quantitative cardiac MRI for characterization and differentiation of ischaemic myocardial lesions of different age. MATERIALS AND METHODS Fifty post-mortem short axis cardiac 3 T MR examinations have been quantified using a quantification sequence. Myocardial lesions were identified according to histology and appearance in MRI images. Ischaemic lesions were assessed for mean T1-, T2- and proton density values. Quantitative values were plotted in a 3D-coordinate system to investigate the clustering of ischaemic myocardial lesions. RESULTS A total of 16 myocardial lesions detected in MRI images were histologically characterized as acute lesions (n = 8) with perifocal oedema (n = 8), subacute lesions (n = 6) and chronic lesions (n = 2). In a 3D plot comprising the combined quantitative values of T1, T2 and PD, the clusters of all investigated lesions could be well differentiated from each other. CONCLUSION Post-mortem quantitative cardiac MRI is feasible for characterization and discrimination of different age stages of myocardial infarction. KEY POINTS • MR quantification is feasible for characterization of different stages of myocardial infarction. • The results provide the base for computer-aided MRI cardiac infarction diagnosis. • Diagnostic criteria may also be applied for living patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability; however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC); brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury; however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. METHODS Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF); 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. RESULTS Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively; P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%; P < 0.01 for all) in LoR subgroups. CONCLUSIONS Effects of MPC depend on energy substrate availability; MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gebiet: Chirurgie Abstract: OBJECTIVES: – The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability, however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC), brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury, however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. – – METHODS: – Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF), 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. – – RESULTS: – Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively, P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%, P < 0.01 for all) in LoR subgroups. – – CONCLUSIONS: – Effects of MPC depend on energy substrate availability, MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS A non-invasive gene-expression profiling (GEP) test for rejection surveillance of heart transplant recipients originated in the USA. A European-based study, Cardiac Allograft Rejection Gene Expression Observational II Study (CARGO II), was conducted to further clinically validate the GEP test performance. METHODS AND RESULTS Blood samples for GEP testing (AlloMap(®), CareDx, Brisbane, CA, USA) were collected during post-transplant surveillance. The reference standard for rejection status was based on histopathology grading of tissue from endomyocardial biopsy. The area under the receiver operating characteristic curve (AUC-ROC), negative (NPVs), and positive predictive values (PPVs) for the GEP scores (range 0-39) were computed. Considering the GEP score of 34 as a cut-off (>6 months post-transplantation), 95.5% (381/399) of GEP tests were true negatives, 4.5% (18/399) were false negatives, 10.2% (6/59) were true positives, and 89.8% (53/59) were false positives. Based on 938 paired biopsies, the GEP test score AUC-ROC for distinguishing ≥3A rejection was 0.70 and 0.69 for ≥2-6 and >6 months post-transplantation, respectively. Depending on the chosen threshold score, the NPV and PPV range from 98.1 to 100% and 2.0 to 4.7%, respectively. CONCLUSION For ≥2-6 and >6 months post-transplantation, CARGO II GEP score performance (AUC-ROC = 0.70 and 0.69) is similar to the CARGO study results (AUC-ROC = 0.71 and 0.67). The low prevalence of ACR contributes to the high NPV and limited PPV of GEP testing. The choice of threshold score for practical use of GEP testing should consider overall clinical assessment of the patient's baseline risk for rejection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After myocardial infarction in humans, lost cardiomyocytes are replaced by an irreversible fibrotic scar. In contrast, zebrafish hearts efficiently regenerate after injury. Complete regeneration of the zebrafish heart is driven by the strong proliferation response of its cardiomyocytes to injury. Here we show that, after cardiac injury in zebrafish, telomerase becomes hyperactivated, and telomeres elongate transiently, preceding a peak of cardiomyocyte proliferation and full organ recovery. Using a telomerase-mutant zebrafish model, we found that telomerase loss drastically decreases cardiomyocyte proliferation and fibrotic tissue regression after cryoinjury and that cardiac function does not recover. The impaired cardiomyocyte proliferation response is accompanied by the absence of cardiomyocytes with long telomeres and an increased proportion of cardiomyocytes showing DNA damage and senescence characteristics. These findings demonstrate the importance of telomerase function in heart regeneration and highlight the potential of telomerase therapy as a means of stimulating cell proliferation upon myocardial infarction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial infarction (MI) leads to a severe loss of cardiomyocytes, which in mammals are replaced by scar tissue. Epicardial derived cells (EPDCs) have been reported to differentiate into cardiomyocytes during development, and proposed to have cardiomyogenic potential in the adult heart. However, mouse MI models reveal little if any contribution of EPDCs to myocardium. In contrast to adult mammals, teleosts possess a high myocardial regenerative capacity. To test if this advantage relates to the properties of their epicardium, we studied the fate of EPDCs in cryoinjured zebrafish hearts. To avoid the limitations of genetic labelling, which might trace only a subpopulation of EPDCs, we used cell transplantation to track all EPDCs during regeneration. EPDCs migrated to the injured myocardium, where they differentiated into myofibroblasts and perivascular fibroblasts. However, we did not detect any differentiation of EPDCs nor any other non-cardiomyocyte population into cardiomyocytes, even in a context of impaired cardiomyocyte proliferation. Our results support a model in which the epicardium promotes myocardial regeneration by forming a cellular scaffold, and suggests that it might induce cardiomyocyte proliferation and contribute to neoangiogenesis in a paracrine manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over 50% of sporadic tumors in humans have a p53 mutation highlighting its importance as a tumor suppressor. Considering additional mutations in other genes involved in p53 pathways, every tumor probably has mutant p53 or impaired p53-mediated functions. In response to a variety of cellular and genotoxic stresses, p53, mainly through its transcriptional activity, induces pathways involved in apoptosis and growth arrest. In these circumstances and under normal situations, p53 must be tightly regulated. Mdm2 is an important regulator of p53. Mdm2 inhibits p53 function by binding and blocking its transactivation domain. In addition, Mdm2 helps target p53 for degradation through its E3 ligase activity. Mdm2 null mice are embryonic lethal due to apoptosis in the blastocysts. However, a p53 null background rescues this lethality demonstrating the importance of the p53-Mdm2 interaction, particularly during development. The lethality of the Mdm2 null mouse prior to implantation limits the ability to investigate the role of Mdm2 in regulating p53 in a temporal and tissue specific manner. Does p53 need to be regulated in all tissues throughout the life of a mouse? Does Mdm2 always have to regulate it? To address these questions, we created a conditional Mdm2 allele. The conditional allele, Mdm2FM, in the presence of Cre recombinase results in the deletion of exons 5 and 6 of Mdm2 (most of the p53 binding domain) and represents a null allele. ^ The Mdm2FM allele was crossed with a heart muscle specific Cre expressing mouse (α-myosin heavy chain promoter driven Cre) to ask whether Mdm2 acts as a negative regulator of p53 in the heart. The heart is the most prominent organ early in embryogenesis and is shaped by cell death and proliferation. p53 does not appear to be active in the heart in response to some types of stress, so it remained to be determined if it has to be regulated in normal heart development. Loss of Mdm2 in the heart results in heart defects as early as E9.5. Loss of Mdm2 results in stabilized p53 and apoptosis. This apoptosis leads to a thinning of the myocardial wall particularly in the ventricles and abnormal ventricular structure. Eventually the abnormal heart fails resulting in lethality by E13.5. The embryonic lethality is rescued in a p53 null background. Thus, Mdm2 is important in regulating p53 in the development of the heart. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To determine whether transforming growth factor beta (TGF-β) receptor blockade using an oral antagonist has an effect on cardiac myocyte size in the hearts of transgenic mice with a heart failure phenotype. ^ Methods. In this pilot experimental study, cardiac tissue sections from the hearts of transgenic mice overexpressing tumor necrosis factor (MHCsTNF mice) having a phenotype of heart failure and wild-type mice, treated with an orally available TGF-β receptor antagonist were stained with wheat germ agglutinin to delineate the myocyte cell membrane and imaged using fluorescence microscopy. Using MetaVue software, the cardiac myocyte circumference was traced and the cross sectional area (CSA) of individual myocytes were measured. Measurements were repeated at the epicardial, mid-myocardial and endocardial levels to ensure adequate sampling and to minimize the effect of regional variations in myocyte size. ANOVA testing with post-hoc pairwise comparisons was done to assess any difference between the drug-treated and diluent-treated groups. ^ Results. There were no statistically significant differences in the average myocyte CSA measured at the epicardial, mid-myocardial or endocardial levels between diluent treated littermate control mice, drug treated normal mice, diluent-treated transgenic mice and drug-treated transgenic mice. There was no difference between the average pan-myocardial cross sectional area between any of the four groups mentioned above. ^ Conclusions. TGF-β receptor blockade using oral TGF-β receptor antagonist does not alter myocyte size in MHCsTNF mice that have a phenotype of heart failure. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy metals (Cd, Cu, Fe, Mn and Zn) concentrations were determined in different tissues (muscle, kidney, liver, brain, gonads, heart and feathers) of Glaucous Gulls (Larus hyperboreus) from Bjornoya and Jan Mayen. The age and spatial dependent variations in heavy metals were quantified and interpreted in view of the three chemometric techniques, i.e. non-parametric Mann-Whitney U test, redundancy gradient analysis and detrended correspondence analysis. The Glaucous Gulls from Bjornoya contained significantly higher (p < 0.05) levels of Cd, Cu and Zn than those inhabited Jan Mayen. Adult birds were characterized by greater (p < 0.01) concentration of muscle, hepatic and renal heavy metals in comparison to chicks. Insignificantly higher slope constant Zn/Cd for the liver than for the kidney may reflect insignificant Cd exposure. Estimate of transfer factor (TF) allows us to assess variations in heavy metal concentrations during the individual development of Glaucous Gulls. It may be stated that there is a distinct increase of bioaccumulation of all the studied metals during subsequent stages of the bird life.