948 resultados para gravitational lensing: strong
Resumo:
We obtain a solution describing a gravitational shock wave propagating along a Randall-Sundrum brane. The interest of such a solution is twofold: on the one hand, it is the first exact solution for a localized source on a Randall-Sundrum three-brane. On the other hand, one can use it to study forward scattering at Planckian energies, including the effects of the continuum of Kaluza-Klein modes. We map out the different regimes for the scattering obtained by varying the center-of-mass energy and the impact parameter. We also discuss exact shock waves in ADD scenarios with compact extra dimensions.
Resumo:
Using the Darmois junction conditions, we give the necessary and sufficient conditions for the matching of a general spherically symmetric metric to a Vaidya radiating solution. We present also these conditions in terms of the physical quantities of the corresponding energy-momentum tensors. The physical interpretation of the results and their possible applications are studied, and we also perform a detailed analysis of previous work on the subject by other authors.
Resumo:
Coalescing compact binary systems are important sources of gravitational waves. Here we investigate the detectability of this gravitational radiation by the recently proposed laser interferometers. The spectral density of noise for various practicable configurations of the detector is also reviewed. This includes laser interferometers with delay lines and Fabry-Prot cavities in the arms, both in standard and dual recycling arrangements. The sensitivity of the detector in all those configurations is presented graphically and the signal-to-noise ratio is calculated numerically. For all configurations we find values of the detector's parameters which maximize the detectability of coalescing binaries, the discussion comprising Newtonian- as well as post-Newtonian-order effects. Contour plots of the signal-to-noise ratio are also presented in certain parameter domains which illustrate the interferometer's response to coalescing binary signals.
Resumo:
We propose a new method of operating laser interferometric gravitational-wave detectors when observing chirps of gravitational radiation from coalescing compact binary stars. This technique consists of the use of narrow-band dual recycling to increase the signal but with the tuning frequency of the detector arranged to follow the frequency of a chirp. We consider the response of such an instrument to chirps, including the effect of inevitable errors in tracking. Different possible tuning strategies are discussed. Both the final signal-to-noise ratio and timing accuracy are evaluated and are shown to be significantly improved by the use of dynamic tuning. This should allow an accurate and reliable measurement of Hubble's constant.
Resumo:
The statistical theory of signal detection and the estimation of its parameters are reviewed and applied to the case of detection of the gravitational-wave signal from a coalescing binary by a laser interferometer. The correlation integral and the covariance matrix for all possible static configurations are investigated numerically. Approximate analytic formulas are derived for the case of narrow band sensitivity configuration of the detector.
Resumo:
We explicitly construct a closed system of differential equations describing the electromagnetic and gravitational interactions among bodies to first order in the coupling constants, retaining terms up to order c-2. The Breit and Barker and O'Connell Hamiltonians are recovered by means of a coordinate transformation. The method used throws light on the meaning of these coordinates.
Resumo:
We examine plane-symmetric cosmological solutions to Einstein's equations which can be generated by the "soliton" technique, using the homogeneous Bianchi solutions as seeds and arbitrary numbers of real or complex poles. In some circumstances, these solutions can be interpreted as "incipient" gravitational waves on the Bianchi background. At early times they look like nonlinear inhomogeneities propagating at nearly the speed of light ("gravisolitons"), while at late times they look like cosmological gravitational waves.
Resumo:
We consider the coupling of quantum massless and massive scalar particles with exact gravitational plane waves. The cross section for scattering of the quantum particles by the waves is shown to coincide with the classical cross section for scattering of geodesics. The expectation value of the scalar field stress tensor between scattering states diverges at the points where classical test particles focus after colliding with the wave. This indicates that back-reaction effects cannot be ignored for plane waves propagating in the presence of quantum particles and that classical singularities are likely to develop.
Resumo:
We present the concept of a sensitive and broadband resonant mass gravitational wave detector. A massive sphere is suspended inside a second hollow one. Short, high-finesse Fabry-Perot optical cavities read out the differential displacements of the two spheres as their quadrupole modes are excited. At cryogenic temperatures, one approaches the standard quantum limit for broadband operation with reasonable choices for the cavity finesses and the intracavity light power. A molybdenum detector, of overall size of 2 m, would reach spectral strain sensitivities of 2x10-23Hz-1/2 between 1000 and 3000 Hz.
Resumo:
In this paper we give some ideas that can be useful to solve Schrödinger equations in the case when the Hamiltonian contains a large term. We obtain an expansion of the solution in reciprocal powers of the large coupling constant. The procedure followed consists in considering that the small part of the Hamiltonian engenders a motion adiabatic to the motion generated by the large part of the same.
Resumo:
INTRODUCTION: We investigated whether mRNA levels of E2F1, a key transcription factor involved in proliferation, differentiation and apoptosis, could be used as a surrogate marker for the determination of breast cancer outcome. METHODS: E2F1 and other proliferation markers were measured by quantitative RT-PCR in 317 primary breast cancer patients from the Stiftung Tumorbank Basel. Correlations to one another as well as to the estrogen receptor and ERBB2 status and clinical outcome were investigated. Results were validated and further compared with expression-based prognostic profiles using The Netherlands Cancer Institute microarray data set reported by Fan and colleagues. RESULTS: E2F1 mRNA expression levels correlated strongly with the expression of other proliferation markers, and low values were mainly found in estrogen receptor-positive and ERBB2-negative phenotypes. Patients with low E2F1-expressing tumors were associated with favorable outcome (hazard ratio = 4.3 (95% confidence interval = 1.8-9.9), P = 0.001). These results were consistent in univariate and multivariate Cox analyses, and were successfully validated in The Netherlands Cancer Institute data set. Furthermore, E2F1 expression levels correlated well with the 70-gene signature displaying the ability of selecting a common subset of patients at good prognosis. Breast cancer patients' outcome was comparably predictable by E2F1 levels, by the 70-gene signature, by the intrinsic subtype gene classification, by the wound response signature and by the recurrence score. CONCLUSION: Assessment of E2F1 at the mRNA level in primary breast cancer is a strong determinant of breast cancer patient outcome. E2F1 expression identified patients at low risk of metastasis irrespective of the estrogen receptor and ERBB2 status, and demonstrated similar prognostic performance to different gene expression-based predictors.