853 resultados para graph theory, functional connectivity, rs-fMRI, nocturnal frontal lobe epilepsy (NFLE)
Resumo:
Head motion (HM) is a well known confound in analyses of functional MRI (fMRI) data. Neuroimaging researchers therefore typically treat HM as a nuisance covariate in their analyses. Even so, it is possible that HM shares a common genetic influence with the trait of interest. Here we investigate the extent to which this relationship is due to shared genetic factors, using HM extracted from resting-state fMRI and maternal and self report measures of Inattention and Hyperactivity-Impulsivity from the Strengths and Weaknesses of ADHD Symptoms and Normal Behaviour (SWAN) scales. Our sample consisted of healthy young adult twins (N = 627 (63% females) including 95 MZ and 144 DZ twin pairs, mean age 22, who had mother-reported SWAN; N = 725 (58% females) including 101 MZ and 156 DZ pairs, mean age 25, with self reported SWAN). This design enabled us to distinguish genetic from environmental factors in the association between head movement and ADHD scales. HM was moderately correlated with maternal reports of Inattention (r = 0.17, p-value = 7.4E-5) and Hyperactivity-Impulsivity (r = 0.16, p-value = 2.9E-4), and these associations were mainly due to pleiotropic genetic factors with genetic correlations [95% CIs] of rg = 0.24 [0.02, 0.43] and rg = 0.23 [0.07, 0.39]. Correlations between self-reports and HM were not significant, due largely to increased measurement error. These results indicate that treating HM as a nuisance covariate in neuroimaging studies of ADHD will likely reduce power to detect between-group effects, as the implicit assumption of independence between HM and Inattention or Hyperactivity-Impulsivity is not warranted. The implications of this finding are problematic for fMRI studies of ADHD, as failing to apply HM correction is known to increase the likelihood of false positives. We discuss two ways to circumvent this problem: censoring the motion contaminated frames of the RS-fMRI scan or explicitly modeling the relationship between HM and Inattention or Hyperactivity-Impulsivity
Resumo:
A novel edge degree f(i) for heteroatom and multiple bonds in molecular graph is derived on the basis of the edge degree delta(e(r)). A novel edge connectivity index F-m is introduced. The multiple linear regression by using the edge connectivity index F-m and alcohol-type parameter delta, alcohol-distance parameter L can provide high-quality QSPR models for the normal boiling points (BPs), molar volumes (MVs), molar refraction (MRs), water solubility(log(1/S)) and octanol/water partition (logP) of alcohols with up to 17 non-hydrogen atoms. The results imply that these physical properties may be expressed as a liner combination of the edge connectivity index and alcohol-type parameter, 6, alcohol-distance parameter, L. For the models of the five properties, the correlation coefficient r and the standard errors are 0.9969,3.022; 0.9993, 1.504; 0.9992, 0.446; 0.9924,0.129 and 0.9973,0.123 for BPs, MVs, MRs, log(1/S) and logP, respectively. The cross-validation by using the leave-one-out method demonstrates the models to be highly reliable from the point of view of statistics.
Resumo:
The identification of subject-specific traits extracted from patterns of brain activity still represents an important challenge. The need to detect distinctive brain features, which is relevant for biometric and brain computer interface systems, has been also emphasized in monitoring the effect of clinical treatments and in evaluating the progression of brain disorders. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. In this study we propose an approach which aims to investigate the existence of a distinctive functional core (sub-network) using an unbiased reconstruction of network topology. Brain signals from a public and freely available EEG dataset were analyzed using a phase synchronization based measure, minimum spanning tree and k-core decomposition. The analysis was performed for each classical brain rhythm separately. Furthermore, we aim to provide a network approach insensitive to the effects that epoch length has on functional connectivity (FC) and network reconstruction. Two different measures, the phase lag index (PLI) and the Amplitude Envelope Correlation (AEC), were applied to EEG resting-state recordings for a group of eighteen healthy volunteers. Weighted clustering coefficient (CCw), weighted characteristic path length (Lw) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Results about distinctive functional core, show highest classification rates from k-core decomposition in gamma (EER=0.130, AUC=0.943) and high beta (EER=0.172, AUC=0.905) frequency bands. Results from scalp analysis concerning the influence of epoch length, show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 seconds for PLI and 6 seconds for AEC. Moreover, CCw and Lw show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1-6 seconds versus 4-8 seconds for AEC). At the source-level the results were even more reliable, with stability already at 1 second duration for PLI-based MSTs. Our results confirm that EEG analysis may represent an effective tool to identify subject-specific characteristics that may be of great impact for several bioengineering applications. Regarding epoch length, the present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain network topology between different studies.
Resumo:
Functional MRI was used to investigate the role of medial temporal lobe and inferior frontal lobe regions in autobiographical recall. Prior to scanning, participants generated cue words for 50 autobiographical memories and rated their phenomenological properties using our autobiographical memory questionnaire (AMQ). During scanning, the cue words were presented and participants pressed a button when they retrieved the associated memory. The autobiographical retrieval task was interleaved in an event-related design with a semantic retrieval task (category generation). Region-of-interest analyses showed greater activation of the amygdala, hippocampus, and right inferior frontal gyrus during autobiographical retrieval relative to semantic retrieval. In addition, the left inferior frontal gyrus showed a more prolonged duration of activation in the semantic retrieval condition. A targeted correlational analysis revealed pronounced functional connectivity among the amygdala, hippocampus, and right inferior frontal gyrus during autobiographical retrieval but not during semantic retrieval. These results support theories of autobiographical memory that hypothesize co-activation of frontotemporal areas during recollection of episodes from the personal past.
Resumo:
We report a first study of brain activity linked to task switching in individuals with Prader-Willi syndrome (PWS) PWS individuals show a specific cognitive deficit in task switching which may be associated with the display of temper outbursts and repetitive questioning The performance of participants with PWS and typically developing controls was matched in a cued task switching procedure and brain activity was contrasted on switching and non switching blocks using SARI Individuals with PWS did not show the typical frontal-parietal pattern of neural activity associated with switching blocks, with significantly reduced activation in regions of the posterior parietal and ventromedial prefrontal cortices We suggest that this is linked to a difficulty in PWS in setting appropriate attentional weights to enable task set reconfiguration In addition to this, PWS individuals did not show the typical pattern of deactivation, with significantly less deactivation in an anterior region of the ventromedial prefrontal cortex One plausible explanation for this is that individuals with PWS show dysfunction within the default mode network which has been linked to attentional control The data point to functional changes in the neural circuitry supporting task switching in PWS even when behavioural performance is matched to controls and thus highlight neural mechanisms that may be involved in a specific pathway between genes cognition and behaviour (C) 2010 Elsevier B V All rights reserved
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.
Resumo:
Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.
Resumo:
Decoding emotional prosody is crucial for successful social interactions, and continuous monitoring of emotional intent via prosody requires working memory. It has been proposed by Ross and others that emotional prosody cognitions in the right hemisphere are organized in an analogous fashion to propositional language functions in the left hemisphere. This study aimed to test the applicability of this model in the context of prefrontal cortex working memory functions. BOLD response data were therefore collected during performance of two emotional working memory tasks by participants undergoing fMRI. In the prosody task, participants identified the emotion conveyed in pre-recorded sentences, and working memory load was manipulated in the style of an N-back task. In the matched lexico-semantic task, participants identified the emotion conveyed by sentence content. Block-design neuroimaging data were analyzed parametrically with SPM5. At first, working memory for emotional prosody appeared to be right-lateralized in the PFC, however, further analyses revealed that it shared much bilateral prefrontal functional neuroanatomy with working memory for lexico-semantic emotion. Supplementary separate analyses of males and females suggested that these language functions were less bilateral in females, but their inclusion did not alter the direction of laterality. It is concluded that Ross et al.'s model is not applicable to prefrontal cortex working memory functions, that evidence that working memory cannot be subdivided in prefrontal cortex according to material type is increased, and that incidental working memory demands may explain the frontal lobe involvement in emotional prosody comprehension as revealed by neuroimaging studies. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Background The information processing capacity of the human mind is limited, as is evidenced by the attentional blink (AB) - a deficit in identifying the second of two temporally-close targets (T1 and T2) embedded in a rapid stream of distracters. Theories of the AB generally agree that it results from competition between stimuli for conscious representation. However, they disagree in the specific mechanisms, in particular about how attentional processing of T1 determines the AB to T2. Methodology/Principal Findings The present study used the high spatial resolution of functional magnetic resonance imaging (fMRI) to examine the neural mechanisms underlying the AB. Our research approach was to design T1 and T2 stimuli that activate distinguishable brain areas involved in visual categorization and representation. ROI and functional connectivity analyses were then used to examine how attentional processing of T1, as indexed by activity in the T1 representation area, affected T2 processing. Our main finding was that attentional processing of T1 at the level of the visual cortex predicted T2 detection rates Those individuals who activated the T1 encoding area more strongly in blink versus no-blink trials generally detected T2 on a lower percentage of trials. The coupling of activity between T1 and T2 representation areas did not vary as a function of conscious T2 perception. Conclusions/Significance These data are consistent with the notion that the AB is related to attentional demands of T1 for selection, and indicate that these demands are reflected at the level of visual cortex. They also highlight the importance of individual differences in attentional settings in explaining AB task performance.
Resumo:
Deficits in facial mimicry have been widely reported in autism. Some studies have suggested that these deficits are restricted to spontaneous mimicry and do not extend to volitional mimicry. We bridge these apparently inconsistent observations, by testing the impact of reward value on neural indices of mimicry, and how autistic traits modulate this impact. Neutral faces were conditioned with high and low reward. Subsequently, functional connectivity between the ventral striatum (VS) and inferior frontal gyrus (IFG) was measured whilst neurotypical adults (n = 30) watched happy expressions made by these conditioned faces. We found greater VS-IFG connectivity in response to high-reward vs. low-reward happy faces. This difference was negatively proportional to autistic traits, suggesting that reduced spontaneous mimicry of social stimuli seen in autism, maybe related to a failure in the modulation of the mirror system by the reward system rather than a circumscribed deficit in the mirror system.
Resumo:
The investigation of bilingualism and cognition has been enriched by recent developments in functional magnetic resonance imaging (fMRI). Extending how bilingual experience shapes cognition, this review examines recent fMRI studies adopting executive control tasks with minimal or no linguistic demands. Across a range of studies with divergent ages and language pairs spoken by bilinguals, brain regions supporting executive control significantly overlap with brain regions recruited for language control (Abutalebi & Green, this issue). Furthermore, limited but emerging studies on resting-state networks are addressed, which suggest more coherent spatially distributed functional connectivity in bilinguals. Given the dynamic nature of bilingual experience, it is essential to consider both task-related functional networks (externally-driven engagement), and resting-state networks, such as default mode network (internal control). Both types of networks are important elements of bilingual language control, which relies on domain-general executive control.
Resumo:
We discuss potential caveats when estimating topologies of 3D brain networks from surface recordings. It is virtually impossible to record activity from all single neurons in the brain and one has to rely on techniques that measure average activity at sparsely located (non-invasive) recording sites Effects of this spatial sampling in relation to structural network measures like centrality and assortativity were analyzed using multivariate classifiers A simplified model of 3D brain connectivity incorporating both short- and long-range connections served for testing. To mimic M/EEG recordings we sampled this model via non-overlapping regions and weighted nodes and connections according to their proximity to the recording sites We used various complex network models for reference and tried to classify sampled versions of the ""brain-like"" network as one of these archetypes It was found that sampled networks may substantially deviate in topology from the respective original networks for small sample sizes For experimental studies this may imply that surface recordings can yield network structures that might not agree with its generating 3D network. (C) 2010 Elsevier Inc All rights reserved
Resumo:
The assessment of routing protocols for mobile wireless networks is a difficult task, because of the networks` dynamic behavior and the absence of benchmarks. However, some of these networks, such as intermittent wireless sensors networks, periodic or cyclic networks, and some delay tolerant networks (DTNs), have more predictable dynamics, as the temporal variations in the network topology can be considered as deterministic, which may make them easier to study. Recently, a graph theoretic model-the evolving graphs-was proposed to help capture the dynamic behavior of such networks, in view of the construction of least cost routing and other algorithms. The algorithms and insights obtained through this model are theoretically very efficient and intriguing. However, there is no study about the use of such theoretical results into practical situations. Therefore, the objective of our work is to analyze the applicability of the evolving graph theory in the construction of efficient routing protocols in realistic scenarios. In this paper, we use the NS2 network simulator to first implement an evolving graph based routing protocol, and then to use it as a benchmark when comparing the four major ad hoc routing protocols (AODV, DSR, OLSR and DSDV). Interestingly, our experiments show that evolving graphs have the potential to be an effective and powerful tool in the development and analysis of algorithms for dynamic networks, with predictable dynamics at least. In order to make this model widely applicable, however, some practical issues still have to be addressed and incorporated into the model, like adaptive algorithms. We also discuss such issues in this paper, as a result of our experience.
Resumo:
Ayahuasca is psychotropic beverage that has been used for ages by indigenous populations in South America, notably in the Amazon region, for religious and medicinal purposes. The tea is obtained by the decoction of leaves from the Psychotria viridis with the bark and stalk of a shrub, the Banisteriopsis caapi. The first is rich in N-N-dimethyltryptamine (DMT), which has an important and well-known hallucinogenic effect due to its agonistic action in serotonin receptors, specifically 5-HT2A. On the other hand, β-carbolines present in B. caapi, particularly harmine and harmaline, are potent monoamine oxidase inhibitors (MAOi). In addition, the tetrahydroharmine (THH), also present in B. caapi, acts as mild selective serotonin reuptake inhibitor and a weak MAOi. This unique composition induces a number of affective, sensitive, perceptual and cognitive changes in individuals under the effect of Ayahuasca. On the other hand, there is growing interest in the Default Mode Network (DMN), which has been consistently observed in functional neuroimaging studies. The key components of this network include structures in the brain midline, as the anterior medial frontal cortex, ventral medial frontal cortex, posterior cingulate cortex, precuneus, and some regions within the inferior parietal lobe and middle temporal gyrus. It has been argued that DMN participate in tasks involving self-judgments, autobiographical memory retrieval, mental simulations, thinking in perspective, meditative states, and others. In general, these tasks require an internal focus of attention, hence the conclusion that the DMN is associated with introspective mental activity. Therefore, this study aimed to evaluate by functional magnetic resonance imaging (fMRI) changes in DMN caused via the ingestion of Ayahuasca by 10 healthy subjects while submitted to two fMRI protocols: a verbal fluency task and a resting state acquisition. In general, it was observed that Ayahuasca causes a reduction in the fMRI signal in central nodes of DMN, such as the anterior cingulate cortex, the medial prefrontal cortex, the posterior cingulate cortex, precuneus and inferior parietal lobe. Furthermore, changes in connectivity patterns of the DMN were observed, especially a decrease in the functional connectivity of the precuneus. Together, these findings indicate an association between the altered state of consciousness experienced by individuals under the effect of Ayahuasca, and changes in the stream of spontaneous thoughts leading to an increased introspective mental activity
Resumo:
The effectiveness of ecological restoration actions toward biodiversity conservation depends on both local and landscape constraints. Extensive information on local constraints is already available, but few studies consider the landscape context when planning restoration actions. We propose a multiscale framework based on the landscape attributes of habitat amount and connectivity to infer landscape resilience and to set priority areas for restoration. Landscapes with intermediate habitat amount and where connectivity remains sufficiently high to favor recolonization were considered to be intermediately resilient, with high possibilities of restoration effectiveness and thus were designated as priority areas for restoration actions. The proposed method consists of three steps: (1) quantifying habitat amount and connectivity; (2) using landscape ecology theory to identify intermediate resilience landscapes based on habitat amount, percolation theory, and landscape connectivity; and (3) ranking landscapes according to their importance as corridors or bottlenecks for biological flows on a broader scale, based on a graph theory approach. We present a case study for the Brazilian Atlantic Forest (approximately 150 million hectares) in order to demonstrate the proposed method. For the Atlantic Forest, landscapes that present high restoration effectiveness represent only 10% of the region, but contain approximately 15 million hectares that could be targeted for restoration actions (an area similar to today's remaining forest extent). The proposed method represents a practical way to both plan restoration actions and optimize biodiversity conservation efforts by focusing on landscapes that would result in greater conservation benefits. © 2013 Society for Ecological Restoration.