956 resultados para gossip, dissemination, network, algorithms
Resumo:
A constructive heuristic algorithm to solve the transmission system expansion planning problem is proposed with the aim of circumventing some critical problems of classical heuristic algorithms that employ relaxed mathematical models to calculate a sensitivity index that guides the circuit additions. The proposed heuristic algorithm is in a branch-and-bound algorithm structure, which can be used with any planning model, such as Transportation model, DC model, AC model or Hybrid models. Tests of the proposed algorithm are presented on real Brazilian systems.
Resumo:
The transmission network planning problem is a non-linear integer mixed programming problem (NLIMP). Most of the algorithms used to solve this problem use a linear programming subroutine (LP) to solve LP problems resulting from planning algorithms. Sometimes the resolution of these LPs represents a major computational effort. The particularity of these LPs in the optimal solution is that only some inequality constraints are binding. This task transforms the LP into an equivalent problem with only one equality constraint (the power flow equation) and many inequality constraints, and uses a dual simplex algorithm and a relaxation strategy to solve the LPs. The optimisation process is started with only one equality constraint and, in each step, the most unfeasible constraint is added. The logic used is similar to a proposal for electric systems operation planning. The results show a higher performance of the algorithm when compared to primal simplex methods.
Resumo:
Large scale combinatorial problems such as the network expansion problem present an amazingly high number of alternative configurations with practically the same investment, but with substantially different structures (configurations obtained with different sets of circuit/transformer additions). The proposed parallel tabu search algorithm has shown to be effective in exploring this type of optimization landscape. The algorithm is a third generation tabu search procedure with several advanced features. This is the most comprehensive combinatorial optimization technique available for treating difficult problems such as the transmission expansion planning. The method includes features of a variety of other approaches such as heuristic search, simulated annealing and genetic algorithms. In all test cases studied there are new generation, load sites which can be connected to an existing main network: such connections may require more than one line, transformer addition, which makes the problem harder in the sense that more combinations have to be considered.
Resumo:
We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.
Resumo:
In 2008, academic researchers and public service officials created a university extension studies platform based on online and on-site meetings denominated "Work-Related Accidents Forum: Analysis, Prevention, and Other Relevant Aspects. Its aim was to help public agents and social partners to propagate a systemic approach that would be helpful in the surveillance and prevention of work-related accidents. This article describes and analyses such a platform. Online access is free and structured to: support dissemination of updated concepts; support on-site meetings and capacity to build educational activities; and keep a permanent space for debate among the registered participants. The desired result is the propagation of a social-technical-systemic view of work-related accidents that replaces the current traditional view that emphasizes human error and results in blaming the victims. The Forum uses an educational approach known as permanent health education, which is based on the experience and needs of workers and encourages debate among participants. The forum adopts a problematizing pedagogy that starts from the requirements and experiences of the social actors and stimulates support and discussions among them in line with an ongoing health educational approach. The current challenge is to turn the platform into a social networking website in order to broaden its links with society.
Resumo:
This paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good initial populations, particularly those used in resolving transmission network expansion planning. The results were compared to those found by a genetic algorithm with random initial populations. The results showed that an efficiently generated initial population led to better solutions being found in less time when applied to low complexity electricity distribution networks and better quality solutions for highly complex networks when compared to a genetic algorithm using random initial populations.
Resumo:
We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.
Resumo:
In this paper a method for solving the Short Term Transmission Network Expansion Planning (STTNEP) problem is presented. The STTNEP is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In this work we present a constructive heuristic algorithm to find a solution of the STTNEP of excellent quality. In each step of the algorithm a sensitivity index is used to add a circuit (transmission line or transformer) to the system. This sensitivity index is obtained solving the STTNEP problem considering as a continuous variable the number of circuits to be added (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an interior points method that uses a combination of the multiple predictor corrector and multiple centrality corrections methods, both belonging to the family of higher order interior points method (HOIPM). Tests were carried out using a modified Carver system and the results presented show the good performance of both the constructive heuristic algorithm to solve the STTNEP problem and the HOIPM used in each step.
Resumo:
Distribution systems with distributed generation require new analysis methods since networks are not longer passive. Two of the main problems in this new scenario are the network reconfiguration and the loss allocation. This work presents a distribution systems graphic simulator, developed with reconfiguration functions and a special focus on loss allocation, both considering the presence of distributed generation. This simulator uses a fast and robust power flow algorithm based on the current summation backward-forward technique. Reconfiguration problem is solved through a heuristic methodology and the losses allocation function, based on the Zbus method, is presented as an attached result for each obtained configuration. Results are presented and discussed, remarking the easiness of analysis through the graphic simulator as an excellent tool for planning and operation engineers, and very useful for training. © 2004 IEEE.
Resumo:
An analysis of the performances of three important methods for generators and loads loss allocation is presented. The discussed methods are: based on pro-rata technique; based on the incremental technique; and based on matrices of circuit. The algorithms are tested considering different generation conditions, using a known electric power system: IEEE 14 bus. Presented and discussed results verify: the location and the magnitude of generators and loads; the possibility to have agents well or poorly located in each network configuration; the discriminatory behavior considering variations in the power flow in the transmission lines. © 2004 IEEE.
Resumo:
In this work, the planning of secondary distribution circuits is approached as a mixed integer nonlinear programming problem (MINLP). In order to solve this problem, a dedicated evolutionary algorithm (EA) is proposed. This algorithm uses a codification scheme, genetic operators, and control parameters, projected and managed to consider the specific characteristics of the secondary network planning. The codification scheme maps the possible solutions that satisfy the requirements in order to obtain an effective and low-cost projected system-the conductors' adequate dimensioning, load balancing among phases, and the transformer placed at the center of the secondary system loads. An effective algorithm for three-phase power flow is used as an auxiliary methodology of the EA for the calculation of the fitness function proposed for solutions of each topology. Results for two secondary distribution circuits are presented, whereas one presents radial topology and the other a weakly meshed topology. © 2005 IEEE.
Resumo:
This paper presents a mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints in full competitive market, assuming that all generation programming plans present in the system operation are known. The methodology let us find an optimal transmission network expansion plan that allows the power system to operate adequately in each one of the generation programming plans specified in the full competitive market case, including a single contingency situation with generation rescheduling using the security (n-1) criterion. In this context, the centralized expansion planning with security constraints and the expansion planning in full competitive market are subsets of the proposal presented in this paper. The model provides a solution using a genetic algorithm designed to efficiently solve the reliable expansion planning in full competitive market. The results obtained for several known systems from the literature show the excellent performance of the proposed methodology.
Resumo:
In this paper, a method for solving the short term transmission network expansion planning problem is presented. This is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In order to And a solution of excellent quality for this problem, a constructive heuristic algorithm is presented in this paper. In each step of the algorithm, a sensitivity index is used to add a circuit (transmission line or transformer) or a capacitor bank (fixed or variable) to the system. This sensitivity index is obtained solving the problem considering the numbers of circuits and capacitors banks to be added (relaxed problem), as continuous variables. The relaxed problem is a large and complex nonlinear programming and was solved through a higher order interior point method. The paper shows results of several tests that were performed using three well-known electric energy systems in order to show the possibility and the advantages of using the AC model. ©2007 IEEE.
Resumo:
Network reconfiguration is an important tool to optimize the operating conditions of a distribution system. This is accomplished modifying the network structure of distribution feeders by changing the open/close status of sectionalizing switches. This not only reduces the power losses, but also relieves the overloading of the network components. Network reconfiguration belongs to a complex family of problems because of their combinatorial nature and multiple constraints. This paper proposes a solution to this problem, using a specialized evolutionary algorithm, with a novel codification, and a brand new way of implement the genetic operators considering the problem characteristics. The algorithm is presented and tested in a real distribution system, showing excellent results and computational efficiency. © 2007 IEEE.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering uncertainty in demand and generation. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The model presented results in an optimization problem that is solved using a specialized genetic algorithm. The results obtained for known systems from the literature show that cheaper plans can be found satisfying the uncertainty in demand and generation. ©2008 IEEE.