991 resultados para functional morphology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The four basic helix-loop-helix myogenic transcription factors, myogenin, Myf5, MRF4, and MyoD are critical for embryonic skeletal muscle development. Myogenin is necessary for the terminal differentiation of myoblasts into myofibers during embryogenesis, but little is known about the roles played by myogenin in adult skeletal muscle function and metabolism. Furthermore, while metabolism is a well-studied physiological process, how it is regulated at the transcriptional level remains poorly understood. In this study, my aim was to determine the function of myogenin in adult skeletal muscle metabolism, exercise capacity, and regeneration. To investigate this, I utilized a mouse strain harboring the Myogflox allele and a Cre recombinase transgene, enabling the efficient deletion of myogenin in the adult mouse. Myogflox/flox mice were stressed physically through involuntary treadmill running and by breeding them with a strain harboring the Duchenne’s muscular dystrophy (DMDmdx) allele. Surprisingly, Myog-deleted animals exhibited an enhanced capacity for exercise, running farther and faster than their wild-type counterparts. Increased lactate production and utilization of glucose as a fuel source indicated that Myog-deleted animals exhibited an increased glycolytic flux. Hypoglycemic Myog-deleted mice no longer possessed the ability to outrun their wild-type counterparts, implying the ability of these animals to further deplete their glucose reserves confers their enhanced exercise capacity. Moreover, Myog-deleted mice exhibited an enhanced response to long-term exercise training. The mice developed a greater proportion of type 1 oxidative muscle fibers, and displayed increased levels of succinate dehydrogenase activity, indicative of increased oxidative metabolism. Mdx:Myog-deleted mice exhibited a similar phenotype, outperforming their mdx counterparts, although lagging behind wild-type animals. The morphology of muscle tissue from mdx:Myog-deleted mice appears to mimic that of mdx animals, indicating that myogenin is dispensable for adult skeletal muscle regeneration. Through global gene expression profiling and quantitative (q)RT-PCR, I identified a unique set of putative myogenin-dependent genes involved in regulating metabolic processes. These data suggest myogenin’s functions during adulthood are distinctly different than those during embryogenesis, and myogenin acts as a high-level transcription factor regulating metabolic activity in adult skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Wilms' tumor gene, WT1, encodes a zinc finger transcription factor which functions as a tumor suppressor. Defects in the WT1 gene can result in the development of nephroblastoma. WT1 is expressed during development, primarily in the metanephric kidney, the mesothelial lining of the abdomen and thorax, and the developing gonads. WT1 expression is tightly regulated and is essential for renal development. The WT1 gene encodes a protein with a proline-rich N-terminus which functions as a transcriptional repressor and C-terminus contains 4 zinc fingers that mediate DNA binding. WT1 represses transcription from a number of growth factors and growth factor receptors. WT1 mRNA undergoes alternative splicing at two sites, resulting in 4 mRNA species and polypeptide products. Exon 5, encoding 17 amino acids is alternatively spliced, and is located between the transcriptional repression domain and the DNA binding domain. The second alternative splice is the terminal 9 nucleotides of zinc finger 3, encoding the tripeptide Lys-Thr-Ser (KTS). The presence or absence of KTS within the zinc fingers of WT1 alters DNA binding.^ I have investigated transcriptional regulation of WT1, characterizing two means of repressing WT1 transcription. I have cloned a transcriptional silencer of the WT1 promoter which is located in the third intron of the WT1 gene. The silencer is 460 bp in length and contains an Alu repeat. The silencer functions in cells of non-renal origin.^ I have found that WT1 protein can autoregulate the WT1 promoter. Using the autoregulation of the WT1 promoter as a functional assay, I have defined differential consensus DNA binding motifs of WT1 isoforms lacking and containing the KTS tripeptide insertion. With these refined consensus DNA binding motifs, I have identified two additional targets of WT1 transcriptional repression, the proto-oncogenes bcl-2 and c-myc.^ I have investigated the ability of the alternatively spliced exon 5 to influence cell growth. In cell proliferation assays, isoforms of WT1 lacking exon 5 repress cell growth. WT1 isoforms containing exon 5 fail to repress cell growth to the same extent, but alter the morphology of the cells. These experiments demonstrate that the alternative splice isoforms of WT1 have differential effects on the function of WT1. These findings suggest a role for the alternative splicing of WT1 in metanephric development. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic cells are compartmentalized into membrane-bound organelles in order to provide sheltered reaction rooms for various specific processes. Organelles are not randomly distributed in a cell or operate isolated from each other. At the contrary — some organelles are closely linked and their functions are tightly orchestrated. The most well-known example of two such organelles acting in concert are the ER and the mitochondrion that work together in order to coordinate cellular lipid biosynthesis, maintain Ca2+-homeostasis, regulate mitochondrial division and control mitochondrial/ER shape as well as to synchronize the movement of these organelles within a cell. To study the mitochondrion and its interface to the ER requires a simplified mitochondrial system. African trypanosomes represent such a system. The unicellular parasite that causes devastating diseases in humans and animals has only one large mitochondrion that does not undergo fission/fusion events except for the context of cell division. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the protozoan. Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal MOM proteome consists of 82 proteins, two thirds of which have never been associated with mitochondria before. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. Interestingly, a putative tethering complex in mammalian cells was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating, if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved. This ER-subdomain associated with mitochondria has been termed mitochondria-associated ER-membranes or MAM. The MAM has recently been implicated to play a key role in Alzheimer’s disease. It is therefore of broad and general interest to establish other eukaryotic model systems in order to investigate the MAM-MOM connection in more detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of the mitochondrial model organism T. brucei and characterized its proteome. Our results show that the trypanosomal MOM proteome consists of 82 proteins. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. In mammalian cells, a putative tethering complex was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic cells are compartmentalized into membrane-bound organelles in order to provide sheltered reaction rooms for various specific processes. Organelles are not randomly distributed in a cell or operate isolated from each other. At the contrary — some organelles are closely linked and their functions are tightly orchestrated. The most well-known example of two such organelles acting in concert are the ER and the mitochondrion that work together in order to coordinate cellular lipid biosynthesis, maintain Ca2+-homeostasis, regulate mitochondrial division and control mitochondrial/ER shape as well as to synchronize the movement of these organelles within a cell. To study the mitochondrion and its interface to the ER requires a simplified mitochondrial system. African trypanosomes represent such a system. The unicellular parasite that causes devastating diseases in humans and animals has only one large mitochondrion that does not undergo fission/fusion events except for the context of cell division. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the protozoan. Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal MOM proteome consists of 82 proteins, two thirds of which have never been associated with mitochondria before. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. Interestingly, a putative tethering complex in mammalian cells was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating, if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved. This ER-subdomain associated with mitochondria has been termed mitochondria-associated ER-membranes or MAM. The MAM has recently been implicated to play a key role in Alzheimer’s disease. It is therefore of broad and general interest to establish other eukaryotic model systems in order to investigate the MAM-MOM connection in more detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron density map of the small ribosomal subunit from Thermus thermophilus, constructed at 4.5 Å resolution, shows the recognizable morphology of this particle, as well as structural features that were interpreted as ribosomal RNA and proteins. Unbiased assignments, carried out by quantitative covalent binding of heavy atom compounds at predetermined sites, led to the localization of the surface of the ribosomal protein S13 at a position compatible with previous assignments, whereas the surface of S11 was localized at a distance of about twice its diameter from the site suggested for its center by neutron scattering. Proteins S5 and S7, whose structures have been determined crystallographically, were visually placed in the map with no alterations in their conformations. Regions suitable to host the fold of protein S15 were detected in several positions, all at a significant distance from the location of this protein in the neutron scattering map. Targeting the 16S RNA region, where mRNA docks to allow the formation of the initiation complex by a mercurated mRNA analog, led to the characterization of its vicinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification and functional characterization of Dictyostelium discoideum dynamin A, a protein composed of 853 amino acids that shares up to 44% sequence identity with other dynamin-related proteins, is described. Dynamin A is present during all stages of D. discoideum development and is found predominantly in the cytosolic fraction and in association with endosomal and postlysosomal vacuoles. Overexpression of the protein has no adverse effect on the cells, whereas depletion of dynamin A by gene-targeting techniques leads to multiple and complex phenotypic changes. Cells lacking a functional copy of dymA show alterations of mitochondrial, nuclear, and endosomal morphology and a defect in fluid-phase uptake. They also become multinucleated due to a failure to complete normal cytokinesis. These pleiotropic effects of dynamin A depletion can be rescued by complementation with the cloned gene. Morphological studies using cells producing green fluorescent protein-dynamin A revealed that dynamin A associates with punctate cytoplasmic vesicles. Double labeling with vacuolin, a marker of a postlysosomal compartment in D. discoideum, showed an almost complete colocalization of vacuolin and dynamin A. Our results suggest that that dynamin A is likely to function in membrane trafficking processes along the endo-lysosomal pathway of D. discoideum but not at the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATP-gated P2X2 receptors are widely expressed in neurons, but the cellular effects of receptor activation are unclear. We engineered functional green fluorescent protein (GFP)-tagged P2X2 receptors and expressed them in embryonic hippocampal neurons, and report an approach to determining functional and total receptor pool sizes in living cells. ATP application to dendrites caused receptor redistribution and the formation of varicose hot spots of higher P2X2-GFP receptor density. Redistribution in dendrites was accompanied by an activation-dependent enhancement of the ATP-evoked current. Substate-specific mutant T18A P2X2-GFP receptors showed no redistribution or activation-dependent enhancement of the ATP-evoked current. Thus fluorescent P2X2-GFP receptors function normally, can be quantified, and reveal the dynamics of P2X2 receptor distribution on the seconds time scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological processes often require that a single gene product participate in multiple types of molecular interactions. Viruses with quasiequivalent capsids provide an excellent paradigm for studying such phenomena because identical protein subunits are found in different structural environments. Differences in subunit joints may be controlled by protein segments, duplex or single-stranded RNA, metal ions, or some combination of these. Each of the virus groups examined display a distinctive mechanism for switching interface interactions, illustrating the magnitude of options that are likely to be found in other biological systems. In addition to determining capsid morphology, assembly controls the timing of autocatalytic maturation cleavage of the viral subunits that is required for infectivity in picorna-, noda-, and tetraviruses. The mechanism of assembly-dependent cleavage is conserved in noda- and tetraviruses, although the quaternary structures of the capsids are different as are the molecular switches that control subunit interfaces. The function of the cleavage in picorna-, noda-, and tetraviruses is probably to release polypeptides that participate in membrane translocation of RNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this thesis is the controlled and reproducible synthesis of functional materials at the nanoscale. In the first chapter, a tuning of morphology and magnetic properties of magnetite nanoparticles is presented. It was achieved by an innovative approach, which involves the use of an organic macrocycle (calixarene) to induce the oriented aggregation of NPs during the synthesis. This method is potentially applicable to the preparation of other metal oxide NPs by thermal decomposition of the respective precursors. Products obtained, in particular the multi-core nanoparticles, show remarkable magnetic and colloidal properties, making them very interesting for biomedical applications. The synthesis and functionalisation of plasmonic Au and Ag nanoparticles is presented in the second chapter. Here, a supramolecular approach was exploited to achieve a controlled and potentially reversible aggregation between Au and Ag NPs. This aggregation phenomena was followed by UV - visible spectroscopy and dynamic light scattering. In the final chapters, the conjugation of plasmonic and magnetic functionalities was tackled through the preparation of dimeric nanostructures. Au - Fe oxide heterodimeric nanoparticles were prepared and their magnetic properties thoroughly characterised. The results demonstrate the formation of FeO (wustite), together with magnetite, during the thermal decomposition of the iron precursor. By an oxidation process that preserves Au in the dimeric structures, wustite completely disappeared, with the formation of either magnetite and / or maghemite, much better from the magnetic point of view. The plasmon resonance of Au results damped by the presence of the iron oxide, a material with high refractive index, but it is still present if the Au domain of the nanoparticles is exposed towards the bulk. Finally, remarkable hyperthermia, also in vitro, was found for these structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Mutations in the gene encoding human insulin-like growth factor-I (IGF-I) cause syndromic neurosensorial deafness. To understand the precise role of IGF-I in retinal physiology, we have studied the morphology and electrophysiology of the retina of the Igf1−/− mice in comparison with that of the Igf1+/− and Igf1+/+ animals during aging. Methods. Serological concentrations of IGF-I, glycemia and body weight were determined in Igf1+/+, Igf1+/− and Igf1−/− mice at different times up to 360 days of age. We have analyzed hearing by recording the auditory brainstem responses (ABR), the retinal function by electroretinographic (ERG) responses and the retinal morphology by immunohistochemical labeling on retinal preparations at different ages. Results. IGF-I levels are gradually reduced with aging in the mouse. Deaf Igf1−/− mice had an almost flat scotopic ERG response and a photopic ERG response of very small amplitude at postnatal age 360 days (P360). At the same age, Igf1+/− mice still showed both scotopic and photopic ERG responses, but a significant decrease in the ERG wave amplitudes was observed when compared with those of Igf1+/+ mice. Immunohistochemical analysis showed that P360 Igf1−/− mice suffered important structural modifications in the first synapse of the retinal pathway, that affected mainly the postsynaptic processes from horizontal and bipolar cells. A decrease in bassoon and synaptophysin staining in both rod and cone synaptic terminals suggested a reduced photoreceptor output to the inner retina. Retinal morphology of the P360 Igf1+/− mice showed only small alterations in the horizontal and bipolar cell processes, when compared with Igf1+/+ mice of matched age. Conclusions. In the mouse, IGF-I deficit causes an age-related visual loss, besides a congenital deafness. The present results support the use of the Igf1−/− mouse as a new model for the study of human syndromic deaf-blindness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06