974 resultados para free eletromagnetic field


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a comprehensive analysis of the renormalization of noncommutative phi(4) scalar field theories on the Groenewold-Moyal plane. These scalar field theories are twisted Poincare invariant. Our main results are that these scalar field theories are renormalizable, free of UV/IR mixing, possess the same fixed points and beta-functions for the couplings as their commutative counterparts. We also argue that similar results hold true for any generic noncommutative field theory with polynomial interactions and involving only pure matter fields. A secondary aim of this work is to provide a comprehensive review of different approaches for the computation of the noncommutative S-matrix: noncommutative interaction picture and noncommutative Lehmann-Symanzik-Zimmermann formalism. DOI: 10.1103/PhysRevD.87.064014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically analyze the performance of transition metal dichalcogenide (MX2) single wall nanotube (SWNT) surround gate MOSFET, in the 10 nm technology node. We consider semiconducting armchair (n, n) SWNT of MoS2, MoSe2, WS2, and WSe2 for our study. The material properties of the nanotubes are evaluated from the density functional theory, and the ballistic device characteristics are obtained by self-consistently solving the Poisson-Schrodinger equation under the non-equilibrium Green's function formalism. Simulated ON currents are in the range of 61-76 mu A for 4.5 nm diameter MX2 tubes, with peak transconductance similar to 175-218 mu S and ON/OFF ratio similar to 0.6 x 10(5)-0.8 x 10(5). The subthreshold slope is similar to 62.22 mV/decade and a nominal drain induced barrier lowering of similar to 12-15 mV/V is observed for the devices. The tungsten dichalcogenide nanotubes offer superior device output characteristics compared to the molybdenum dichalcogenide nanotubes, with WSe2 showing the best performance. Studying SWNT diameters of 2.5-5 nm, it is found that increase in diameter provides smaller carrier effective mass and 4%-6% higher ON currents. Using mean free path calculation to project the quasi-ballistic currents, 62%-75% reduction from ballistic values in drain current in long channel lengths of 100, 200 nm is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 at x similar to 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na1/2Bi1/2TiO3-based ferroelectrics. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analytically evaluate the Renyi entropies for the two dimensional free boson CFT. The CFT is considered to be compactified on a circle and at finite temperature. The Renyi entropies S-n are evaluated for a single interval using the two point function of bosonic twist fields on a torus. For the case of the compact boson, the sum over the classical saddle points results in the Riemann-Siegel theta function associated with the A(n-1) lattice. We then study the Renyi entropies in the decompactification regime. We show that in the limit when the size of the interval becomes the size of the spatial circle, the entanglement entropy reduces to the thermal entropy of free bosons on a circle. We then set up a systematic high temperature expansion of the Renyi entropies and evaluate the finite size corrections for free bosons. Finally we compare these finite size corrections both for the free boson CFT and the free fermion CFT with the one-loop corrections obtained from bulk three dimensional handlebody spacetimes which have higher genus Riemann surfaces as its boundary. One-loop corrections in these geometries are entirely determined by quantum numbers of the excitations present in the bulk. This implies that the leading finite size corrections contributions from one-loop determinants of the Chern-Simons gauge field and the Dirac field in the dual geometry should reproduce that of the free boson and the free fermion CFT respectively. By evaluating these corrections both in the bulk and in the CFT explicitly we show that this expectation is indeed true.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein aggregation, linked to many of diseases, is initiated when monomers access rogue conformations that are poised to form amyloid fibrils. We show, using simulations of src SH3 domain, that mechanical force enhances the population of the aggregation-prone (N*) states, which are rarely populated under force free native conditions but are encoded in the spectrum of native fluctuations. The folding phase diagrams of SH3 as a function of denaturant concentration (C]), mechanical force (f), and temperature exhibit an apparent two-state behavior, without revealing the presence of the elusive N* states. Interestingly, the phase boundaries separating the folded and unfolded states at all C] and f fall on a master curve, which can be quantitatively described using an analogy to superconductors in a magnetic field. The free energy profiles as a function of the molecular extension (R), which are accessible in pulling experiments, (R), reveal the presence of a native-like N* with a disordered solvent-exposed amino-terminal beta-strand. The structure of the N* state is identical with that found in Fyn SH3 by NMR dispersion experiments. We show that the timescale for fibril formation can be estimated from the population of the N* state, determined by the free energy gap separating the native structure and the N* state, a finding that can be used to assess fibril forming tendencies of proteins. The structures of the N* state are used to show that oligomer formation and likely route to fibrils occur by a domain-swap mechanism in SH3 domain. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure, ferroelectric, and piezoelectric behaviors of the Ba(Ti1-xCex)O-3 solid solution have been investigated at close composition intervals in the dilute concentration regime. Ce concentration as low as 2 mol. % induces tetragonal-orthorhombic instability and coexistence of the phases, leading to enhanced high-field strain and direct piezoelectric response. Detailed structural analysis revealed tetragonal + orthorhombic phase coexistence for x = 0.02, orthorhombic for 0.03 <= x <= 0.05, and orthorhombic + rhombohedral for 0.06 <= x <= 0.08. The results suggest that Ce-modified BaTiO3 is a potential lead-free piezoelectric material. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the transients of buckling in drying colloidal suspensions is pivotal for producing new functional microstructures with tunable morphologies. Here, we report first observations and elucidate the buckling instability induced morphological transition (sphere to ring structure) in an acoustically levitated, heated nanosuspension droplet using dynamic energy balance. Droplet deformation featuring the formation of symmetric cavities is initiated by capillary pressure that is two to three orders of magnitude greater than the acoustic radiation pressure, thus indicating that the standing pressure field has no influence on the buckling front kinetics. With an increase in heat flux, the growth rate of surface cavities and their post-buckled volume increase while the buckling time period reduces, thereby altering the buckling pathway and resulting in distinct precipitate structures. However, irrespective of the heating rate, the volumetric droplet deformation exhibits a linear time dependence and the droplet vaporization is observed to deviate from the classical D-2-law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new stabilization scheme, based on a stochastic representation of the discretized field variables, is proposed with a view to reduce or even eliminate unphysical oscillations in the mesh-free numerical simulations of systems developing shocks or exhibiting localized bands of extreme deformation in the response. The origin of the stabilization scheme may be traced to nonlinear stochastic filtering and, consistent with a class of such filters, gain-based additive correction terms are applied to the simulated solution of the system, herein achieved through the element-free Galerkin method, in order to impose a set of constraints that help arresting the spurious oscillations. The method is numerically illustrated through its Applications to inviscid Burgers' equations, wherein shocks may develop as a result of intersections of the characteristics, and to a gradient plasticity model whose response is often characterized by a developing shear band as the external load is gradually increased. The potential of the method in stabilized yet accurate numerical simulations of such systems involving extreme gradient variations in the response is thus brought forth. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The highly complex structure-property interrelationship in the lead-free piezoelectric (x) Na1/2Bi1/2TiO3 - (1 - x) BaTiO3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x = 0.80, i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x < 0.8) to a long-period modulated tetragonal phase (for x > 0.80). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes Bellaiche and Iniguez, Phys. Rev. B 88, 014104 ( 2013); Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we derive an approach for the effective utilization of thermodynamic data in phase-field simulations. While the most widely used methodology for multi-component alloys is following the work by Eiken et al. (2006), wherein, an extrapolative scheme is utilized in conjunction with the TQ interface for deriving the driving force for phase transformation, a corresponding simplistic method based on the formulation of a parabolic free-energy model incorporating all the thermodynamics has been laid out for binary alloys in the work by Folch and Plapp (2005). In the following, we extend this latter approach for multi-component alloys in the framework of the grand-potential formalism. The coupling is applied for the case of the binary eutectic solidification in the Cr-Ni alloy and two-phase solidification in the ternary eutectic alloy (Al-Cr-Ni). A thermodynamic justification entails the basis of the formulation and places it in context of the bigger picture of Integrated Computational Materials Engineering. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordination-driven self-assembly of dinuclear half-sandwich p-cymene ruthenium(II) complexes Ru-2(mu-eta(4)-C2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) and Ru-2(mu-eta(4)-C6H2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) separately with imidazole-based tritopic donors (L-1-L-2) in methanol yielded a series of hexanuclear 3+2] trigonal prismatic cages (2-5), respectively L-1 = 1,3,5-tris(imidazole-1-yl) benzene; L-2 = 4,4',4 `'-tris(imidazole-1-yl) triphenylamine]. All the self-assembled cages 2-5 were characterized by various spectroscopic techniques (multinuclear NMR, Infra-red and ESI-MS) and their sizes, shapes were obtained through geometry optimization using molecular mechanics universal force field (MMUFF) computation. Despite the possibility due to the free rotation of donor sites of imidazole ligands, of two different atropoisomeric prismatic cages (C-3h or C-s) and polymeric product, the self-selection of single (C(3)h) conformational isomeric cages as the only product is a noteworthy observation. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexity associated with local structures continues to pose challenges with regard to the understanding of the structure-property relationship in Na1/2Bi1/2TiO3-based lead-free piezoceramics. (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 is an extensively studied system because of its interesting piezoelectric properties. Recently, a room temperature phase boundary was reported at x = 0.03 in this system Ma et al., Adv. Funct. Mater. 23, 5261 (2013)]. In the present work we have examined this subtle phase boundary using x-ray diffraction, neutron diffraction, dielectric measurements as a function of composition (x < 0.06), temperature, and electric field. Our results show that this boundary separates an R3c + Cc-like structural state for x < 0.03 from an R3c+ cubiclike structural state for 0.03 <= x <= 0.05 in the unpoled specimens. This phase boundary is characterized by an anomalous reduction in the depolarization temperature, and a suppression of the tetragonal distortion of the high temperature P4bm phase. Our results also provide the clue to understand the pathway leading to the cubiclike structure of the critical composition x = 0.06, known for its highest piezoelectric response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n-type GaAs at room temperature. A transient voltage of similar to 100 mu V was measured across a Au-Al2O3-GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of similar to 6 T. Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 x 10(15) cm(-3). Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarization self-modulation effect in a free oscillated Nd:YAG laser is investigated after a quarter wave plate is introduced independently in the two positions of the cavity. As described in the previous experiments, the intensity components in the orthogonal directions are modulated with a period of the round-trip time or twice. Different pulse shapes reveal that the seed field from the spontaneous emission is not uniform and seems to be stochastic for each pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic damping effect of the non-uniform magnetic field on the floating-zone crystal growth process in microgravity is studied by numerical simulation. The results show that the non-uniform magnetic field with designed configuration can effectively reduce the flow near the free surface and then in the melt zone. At the same time, the designed magnetic field can improve the impurity concentration non-uniformity along the solidification interface. The primary principles of the magnetic field configuration design are also discussed.