910 resultados para forecasts
Resumo:
Seasonal forecast skill of the basinwide and regional tropical cyclone (TC) activity in an experimental coupled prediction system based on the ECMWF System 4 is assessed. As part of a collaboration between the Center for Ocean–Land–Atmosphere Studies (COLA) and the ECMWF called Project Minerva, the system is integrated at the atmospheric horizontal spectral resolutions of T319, T639, and T1279. Seven-month hindcasts starting from 1 May for the years 1980–2011 are produced at all three resolutions with at least 15 ensemble members. The Minerva system demonstrates statistically significant skill for retrospective forecasts of TC frequency and accumulated cyclone energy (ACE) in the North Atlantic (NA), eastern North Pacific (EP), and western North Pacific. While the highest scores overall are achieved in the North Pacific, the skill in the NA appears to be limited by an overly strong influence of the tropical Pacific variability. Higher model resolution improves skill scores for the ACE and, to a lesser extent, the TC frequency, even though the influence of large-scale climate variations on these TC activity measures is largely independent of resolution changes. The biggest gain occurs in transition from T319 to T639. Significant skill in regional TC forecasts is achieved over broad areas of the Northern Hemisphere. The highest-resolution hindcasts exhibit additional locations with skill in the NA and EP, including land-adjacent areas. The feasibility of regional intensity forecasts is assessed. In the presence of the coupled model biases, the benefits of high resolution for seasonal TC forecasting may be underestimated.
Resumo:
A new generation of high-resolution (1 km) forecast models promises to revolutionize the prediction of hazardous weather such as windstorms, flash floods, and poor air quality. To realize this promise, a dense observing network, focusing on the lower few kilometers of the atmosphere, is required to verify these new forecast models with the ultimate goal of assimilating the data. At present there are insufficient systematic observations of the vertical profiles of water vapor, temperature, wind, and aerosols; a major constraint is the absence of funding to install new networks. A recent research program financed by the European Union, tasked with addressing this lack of observations, demonstrated that the assimilation of observations from an existing wind profiler network reduces forecast errors, provided that the individual instruments are strategically located and properly maintained. Additionally, it identified three further existing European networks of instruments that are currently underexploited, but with minimal expense they could deliver quality-controlled data to national weather services in near–real time, so the data could be assimilated into forecast models. Specifically, 1) several hundred automatic lidars and ceilometers can provide backscatter profiles associated with aerosol and cloud properties and structures with 30-m vertical resolution every minute; 2) more than 20 Doppler lidars, a fairly new technology, can measure vertical and horizontal winds in the lower atmosphere with a vertical resolution of 30 m every 5 min; and 3) about 30 microwave profilers can estimate profiles of temperature and humidity in the lower few kilometers every 10 min. Examples of potential benefits from these instruments are presented.
Resumo:
Weather conditions in critical periods of the vegetative crop development influence crop productivity, thus being a basic parameter for crop forecast. Reliable extended period weather forecasts may contribute to improve the estimation of agricultural productivity. The production of soybean plays an important role in the Brazilian economy, because this country is ranked among the largest producers of soybeans in the world. This culture can be significantly affected by water conditions, depending on the intensity of water deficit. This work explores the role of extended period weather forecasts for estimating soybean productivity in the southern part of Brazil, Passo Fundo, and Londrina (State of Rio Grande do Sul and Parana, respectively) in the 2005/2006 harvest. The goal was to investigate the possible contribution of precipitation forecasts as a substitute for the use of climatological data on crop forecasts. The results suggest that the use of meteorological forecasts generate more reliable productivity estimates during the growth period than those generated only through climatological information.
Resumo:
Due to the increase in water demand and hydropower energy, it is getting more important to operate hydraulic structures in an efficient manner while sustaining multiple demands. Especially, companies, governmental agencies, consultant offices require effective, practical integrated tools and decision support frameworks to operate reservoirs, cascades of run-of-river plants and related elements such as canals by merging hydrological and reservoir simulation/optimization models with various numerical weather predictions, radar and satellite data. The model performance is highly related with the streamflow forecast, related uncertainty and its consideration in the decision making. While deterministic weather predictions and its corresponding streamflow forecasts directly restrict the manager to single deterministic trajectories, probabilistic forecasts can be a key solution by including uncertainty in flow forecast scenarios for dam operation. The objective of this study is to compare deterministic and probabilistic streamflow forecasts on an earlier developed basin/reservoir model for short term reservoir management. The study is applied to the Yuvacık Reservoir and its upstream basin which is the main water supply of Kocaeli City located in the northwestern part of Turkey. The reservoir represents a typical example by its limited capacity, downstream channel restrictions and high snowmelt potential. Mesoscale Model 5 and Ensemble Prediction System data are used as a main input and the flow forecasts are done for 2012 year using HEC-HMS. Hydrometeorological rule-based reservoir simulation model is accomplished with HEC-ResSim and integrated with forecasts. Since EPS based hydrological model produce a large number of equal probable scenarios, it will indicate how uncertainty spreads in the future. Thus, it will provide risk ranges in terms of spillway discharges and reservoir level for operator when it is compared with deterministic approach. The framework is fully data driven, applicable, useful to the profession and the knowledge can be transferred to other similar reservoir systems.
Resumo:
Este estudo investiga o poder preditivo fora da amostra, um mês à frente, de um modelo baseado na regra de Taylor para previsão de taxas de câmbio. Revisamos trabalhos relevantes que concluem que modelos macroeconômicos podem explicar a taxa de câmbio de curto prazo. Também apresentamos estudos que são céticos em relação à capacidade de variáveis macroeconômicas preverem as variações cambiais. Para contribuir com o tema, este trabalho apresenta sua própria evidência através da implementação do modelo que demonstrou o melhor resultado preditivo descrito por Molodtsova e Papell (2009), o “symmetric Taylor rule model with heterogeneous coefficients, smoothing, and a constant”. Para isso, utilizamos uma amostra de 14 moedas em relação ao dólar norte-americano que permitiu a geração de previsões mensais fora da amostra de janeiro de 2000 até março de 2014. Assim como o critério adotado por Galimberti e Moura (2012), focamos em países que adotaram o regime de câmbio flutuante e metas de inflação, porém escolhemos moedas de países desenvolvidos e em desenvolvimento. Os resultados da nossa pesquisa corroboram o estudo de Rogoff e Stavrakeva (2008), ao constatar que a conclusão da previsibilidade da taxa de câmbio depende do teste estatístico adotado, sendo necessária a adoção de testes robustos e rigorosos para adequada avaliação do modelo. Após constatar não ser possível afirmar que o modelo implementado provém previsões mais precisas do que as de um passeio aleatório, avaliamos se, pelo menos, o modelo é capaz de gerar previsões “racionais”, ou “consistentes”. Para isso, usamos o arcabouço teórico e instrumental definido e implementado por Cheung e Chinn (1998) e concluímos que as previsões oriundas do modelo de regra de Taylor são “inconsistentes”. Finalmente, realizamos testes de causalidade de Granger com o intuito de verificar se os valores defasados dos retornos previstos pelo modelo estrutural explicam os valores contemporâneos observados. Apuramos que o modelo fundamental é incapaz de antecipar os retornos realizados.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
The cosmological constant Λ seems to be a not satisfactory explanation of the late-time accelerated expansion of the Universe, for which a number of experimental evidences exist; therefore, it has become necessary in the last years to consider alternative models of dark energy, meant as cause of the accelerated expansion. In the study of dark energy models, it is important to understand which quantities can be determined starting from observational data, without assuming any hypothesis on the cosmological model; such quantities have been determined in Amendola, Kunz et al., 2012. In the same paper it has been further shown that it is possible to estabilish a relation between the model-independent parameters and the anisotropic stress η, which can be also expressed as a combination of the functions appearing in the most general Lagrangian for the scalar-tensor theories, the Horndeski Lagrangian. In the present thesis, the Fisher matrix formalism is used to perform a forecast on the constraints that will be possible to make on the anisotropic stress η in the future, starting from the estimated uncertainties for the galaxy clustering and weak lensing measurements which will be performed by the European Space Agency Euclid mission, to be launched in 2020. Further, constraints coming from supernovae-Ia observations are considered. The forecast is performed for two cases in which (a) η is considered as depending from redshift only and (b) η is constant and equal to one, as in the ΛCDM model.
Resumo:
The past decade has brought significant advancements in seasonal climate forecasting. However, water resources decision support and management continues to be based almost entirely on historical observations and does not take advantage of climate forecasts. This study builds on previous work that conditioned streamflow ensemble forecasts on observable climate indicators, such as the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) for use in a decision support model for the Highland Lakes multi-reservoir system in central Texas operated by the Lower Colorado River Authority (LCRA). In the current study, seasonal soil moisture is explored as a climate indicator and predictor of annual streamflow for the LCRA region. The main purpose of this study is to evaluate the correlation of fractional soil moisture with streamflow using the 1950-2000 Variable Infiltration Capacity (VIC) Retrospective Land Surface Data Set over the LCRA region. Correlations were determined by examining different annual and seasonal combinations of VIC modeled fractional soil moisture and observed streamflow. The applicability of the VIC Retrospective Land Surface Data Set as a data source for this study is tested along with establishing and analyzing patterns of climatology for the watershed study area using the selected data source (VIC model) and historical data. Correlation results showed potential for the use of soil moisture as a predictor of streamflow over the LCRA region. This was evident by the good correlations found between seasonal soil moisture and seasonal streamflow during coincident seasons as well as between seasonal and annual soil moisture with annual streamflow during coincident years. With the findings of good correlation between seasonal soil moisture from the VIC Retrospective Land Surface Data Set with observed annual streamflow presented in this study, future research would evaluate the application of NOAA Climate Prediction Center (CPC) forecasts of soil moisture in predicting annual streamflow for use in the decision support model for the LCRA.
Resumo:
A great increase of private car ownership took place in China from 1980 to 2009 with the development of the economy. To explain the relationship between car ownership and economic and social changes, an ordinary least squares linear regression model is developed using car ownership per capita as the dependent variable with GDP, savings deposits and highway mileages per capita as the independent variables. The model is tested and corrected for econometric problems such as spurious correlation and cointegration. Finally, the regression model is used to project oil consumption by the Chinese transportation sector through 2015. The result shows that about 2.0 million barrels of oil will be consumed by private cars in conservative scenario, and about 2.6 million barrels of oil per day in high case scenario in 2015. Both of them are much higher than the consumption level of 2009, which is 1.9 million barrels per day. It also shows that the annual growth rate of oil demand by transportation is 2.7% - 3.1% per year in the conservative scenario, and 6.9% - 7.3% per year in the high case forecast scenario from 2010 to 2015. As a result, actions like increasing oil efficiency need to be taken to deal with challenges of the increasing demand for oil.
Resumo:
Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.
Resumo:
With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979-2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.