992 resultados para focal adhesions
Resumo:
The differentiation between benign and malignant focal liver lesions plays an important role in diagnosis of liver disease and therapeutic planning of local or general disease. This differentiation, based on characterization, relies on the observation of the dynamic vascular patterns (DVP) of lesions with respect to adjacent parenchyma, and may be assessed during contrast-enhanced ultrasound imaging after a bolus injection. For instance, hemangiomas (i.e., benign lesions) exhibit hyper-enhanced signatures over time, whereas metastases (i.e., malignant lesions) frequently present hyperenhanced foci during the arterial phase and always become hypo-enhanced afterwards. The objective of this work was to develop a new parametric imaging technique, aimed at mapping the DVP signatures into a single image called a DVP parametric image, conceived as a diagnostic aid tool for characterizing lesion types. The methodology consisted in processing a time sequence of images (DICOM video data) using four consecutive steps: (1) pre-processing combining image motion correction and linearization to derive an echo-power signal, in each pixel, proportional to local contrast agent concentration over time; (2) signal modeling, by means of a curve-fitting optimization, to compute a difference signal in each pixel, as the subtraction of adjacent parenchyma kinetic from the echopower signal; (3) classification of difference signals; and (4) parametric image rendering to represent classified pixels as a support for diagnosis. DVP parametric imaging was the object of a clinical assessment on a total of 146 lesions, imaged using different medical ultrasound systems. The resulting sensitivity and specificity were 97% and 91%, respectively, which compare favorably with scores of 81 to 95% and 80 to 95% reported in medical literature for sensitivity and specificity, respectively.
Resumo:
Background: EEG is the cornerstone of epilepsy diagnostics and mandatory to determine the underlying epilepsy syndrome (e.g. focal vs idiopathic generalized). However, its potential as imaging tool is still underrecognized. In the present study, we aim to determine the prerequisites of maximal benefit of electric source imaging (ESI) to localize the irritative zone in patients with focal epilepsy. Methods: 150 patients suffering from focal epilepsy and with minimum 1 year post-operative follow-up were studied prospectively by reviewers blinded to the underlying diagnosis and outcome. We evaluated the influence of two important factors on sensitivity and specificity of ESI: the number of electrodes (low resolution, LR-ESI: \30 vs. high resolution, HR-ESI: 128-256 electrodes), and the use of individual MRI (i-MRI) vs. template MRI (t-MRI) as head model.Results: ESI had a sensitivity of 85% and a specificity of 87% when HR-ESI with i-MRI was used. Using LR-ESI, sensitivity decreased to 68%, or even 57% when only t-MRI was available. The sensitivity of HR-ESI/i-MRI compared favorably with those of MRI (76%), PET (69%) and ictal/interictal SPECT (64%).Interpretation: This study on a large patient group shows excellent sensitivity and specificity of ESI if 128 EEG channels or more are used for ESI and if the results are co-registered to the patient's individual MRI. Localization precision is as high as or even higher than established brain imaging techniques, providing excellent costeffectiveness in epilepsy evaluation. HR-ESI appears to be a valuable additional imaging tool, given that larger electrode arrays are easily and rapidly applied with modern EEG equipment and that structural MRI is nearly always available for these patients.
Resumo:
Considering a pure coordination game with a large number of equivalentequilibria, we argue, first, that a focal point that is itself not a Nash equilibriumand is Pareto dominated by all Nash equilibria, may attract the players'choices. Second, we argue that such a non-equilibrium focal point may act asan equilibrium selection device that the players use to coordinate on a closelyrelated small subset of Nash equilibria. We present theoretical as well asexperimental support for these two new roles of focal points as coordinationdevices.
Resumo:
En este trabajo se presenta un estudio de los parámetros dinámicos de terremotos ocurridos bajo las dorsales del Atlántico y Oriental del Pacífico, así como de la variación regional del coeficiente de atenuación de las ondas Rayleigh para la región oriental del Pacífico. Se ha obtenido un coeficiente de atenuación anormalmente alto bajo la dorsal del Pacífico e importantes diferencias en las condiciones de similaridad para las dos dorsales. Comparando los parámetros dinámicos obtenidos para las dorsales (zonas de tensión) con parámetros obtenidos para zonas de subducción (zonas de compresión), resultan ser similares excepto para la caída de esfuerzos. Los resultados obtenidos se interpretan en función de la actividad tectónica de las dorsales.
Resumo:
We report the 32nd case of congenital absence of portal vein in an 18-year-old female adult associated with multiple focal nodular hyperplasia of the liver. The association of various hepatic tumors has been observed in half of the publications about congenital absence of portal vein. Hepatic tumors seem to result from systemic diversion of portal vein flow with a resultant increase of arterial flow causing important vascular and nutritif changes the liver and consequent parenchymal transformation.
Resumo:
Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.
Resumo:
Glibenclamide is neuroprotective against cerebral ischemia in rats. We studied whether glibenclamide enhances long-term brain repair and improves behavioral recovery after stroke. Adult male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 90 minutes. A low dose of glibenclamide (total 0.6mg) was administered intravenously 6, 12, and 24 hours after reperfusion. We assessed behavioral outcome during a 30-day follow-up and animals were perfused for histological evaluation. In vitro specific binding of glibenclamide to microglia increased after pro-inflammatory stimuli. In vivo glibenclamide was associated with increased migration of doublecortin-positive cells in the striatum toward the ischemic lesion 72 hours after MCAO, and reactive microglia expressed sulfonylurea receptor 1 (SUR1) and Kir6.2 in the medial striatum. One month after MCAO, glibenclamide was also associated with increased number of NeuN-positive and 5-bromo-2-deoxyuridine-positive neurons in the cortex and hippocampus, and enhanced angiogenesis in the hippocampus. Consequently, glibenclamide-treated MCAO rats showed improved performance in the limb-placing test on postoperative days 22 to 29, and in the cylinder and water-maze test on postoperative day 29. Therefore, acute blockade of SUR1 by glibenclamide enhanced long-term brain repair in MCAO rats, which was associated with improved behavioral outcome.
Resumo:
Early studies showed that the administration of the anti-inflammatory cytokine interleukin-10 (IL10) protects against permanent middle cerebral artery occlusion (MCAO) in mice. In this study, transgenic mice expressing murine IL10 (IL10T) directed by the major histocompatibility complex Ea promoter were produced and used to explore the effect of chronically increased IL10 levels on MCAO-related molecular mechanisms. IL10 was over-expressed in astrocytes, microglia, and endothelial brain cells in IL10T compared with wild type mice. Four days following MCAO, IL10T mice showed a 40% reduction in infarct size which was associated to significantly reduced levels of active caspase 3 compared with wild type mice. Under basal conditions, anti-inflammatory factors such as nerve growth factor and GSH were up-regulated and the pro-inflammatory cytokine IL1beta was down-regulated in the brain of IL10T animals. In addition, these mice displayed increased basal GSH levels in microglial and endothelial cells as well as a marked increase in manganese superoxide dismutase in endothelial lining blood vessels. Following ischemia, IL10T mice showed a marked reduction in pro-inflammatory cytokines, including tumor necrosis factor-alpha, interferon-gamma, and IL1beta. Our data indicate that constitutive IL10 over-expression is associated with a striking resistance to cerebral ischemia that may be attributed to changes in the basal redox properties of glial/endothelial cells.
Resumo:
Sleep-wake disturbances are frequently observed in stroke patients and are associated with poorer functional outcome. Until now the effects of sleep on stroke evolution are unknown. The purpose of the present study was to evaluate the effects of three sleep deprivation (SD) protocols on brain damages after focal cerebral ischemia in a rat model. Permanent occlusion of distal branches of the middle cerebral artery was induced in adult rats. The animals were then subjected to 6h SD, 12h SD or sleep disturbances (SDis) in which 3 x 12h sleep deprivation were performed by gentle handling. Infarct size and brain swelling were assessed by Cresyl violet staining, and the number of damaged cells was measured by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Behavioral tests, namely tape removal and cylinder tests, were performed for assessing sensorimotor function. In the 6h SD protocol, no significant difference (P > 0.05) was found either in infarct size (42.5 ± 30.4 mm3 in sleep deprived animals vs. 44.5 ± 20.5 mm3 in controls, mean ± s.d.), in brain swelling (10.2 ± 3.8 % in sleep deprived animals vs. 11.3 ± 2.0 % in controls) or in number of TUNEL-positive cells (21.7 ± 2.0/mm2 in sleep deprived animals vs. 23.0 ± 1.1/mm2 in controls). In contrast, 12h sleep deprivation increased infarct size by 40 % (82.8 ± 10.9 mm3 in SD group vs. 59.2 ± 13.9 mm3 in control group, P = 0.008) and number of TUNEL-positive cells by 137 % (46.8 ± 15/mm in SD group vs. 19.7 ± 7.7/mm2 in control group, P = 0.003). There was no significant difference (P > 0.05) in brain swelling (12.9 ± 6.3 % in sleep deprived animals vs. 11.6 ± 6.0 % in controls). The SDis protocol also increased infarct size by 76 % (3 x 12h SD 58.8 ± 20.4 mm3 vs. no SD 33.8 ± 6.3 mm3, P = 0.017) and number of TUNEL-positive cells by 219 % (32.9 ± 13.2/mm2 vs. 10.3 ± 2.5/mm2, P = 0.008). Brain swelling did not show any difference between the two groups (24.5 ± 8.4 % in SD group vs. 16.7 ± 8.9 % in control group, p > 0.05). Both behavioral tests did not show any concluding results. In summary, we demonstrate that sleep deprivation aggravates brain damages in a rat model of stroke. Further experiments are needed to unveil the mechanisms underlying these effects.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are a potential target for neuroprotection in focal ischemic stroke. These nuclear receptors have major effects in lipid metabolism, but they are also involved in inflammatory processes. Three PPAR isotypes have been identified: alpha, beta (or delta) and gamma. The development of PPAR transgenic mice offers a promising tool for prospective therapeutic studies. This study used MRI to assess the role of PPARalpha and PPARbeta in the development of stroke. Permanent middle cerebral artery occlusion induced focal ischemia in wild-type, PPARalpha-null mice and PPARbeta-null mice. T(2)-weighted MRI was performed with a 7 T MRI scan on day 0, 1, 3, 7 and 14 to monitor lesion growth in the various genotypes. General Linear Model statistical analysis found a significant difference in lesion volume between wild-type and PPAR-null mice for both alpha and beta isotypes. These data validate high-resolution MRI for monitoring cerebral ischemic lesions, and confirm the neuroprotective role of PPARalpha and PPARbeta in the brain.
Resumo:
CONTEXT: The incidence of localised prostate cancer is increasing worldwide. In light of recent evidence, current, radical, whole-gland treatments for organ-confined disease have being questioned with respect to their side effects, cancer control, and cost. Focal therapy may be an effective alternative strategy. OBJECTIVE: To systematically review the existing literature on baseline characteristics of the target population; preoperative evaluation to localise disease; and perioperative, functional, and disease control outcomes following focal therapy. EVIDENCE ACQUISITION: Medline (through PubMed), Embase, Web of Science, and Cochrane Review databases were searched from inception to 31 October 2012. In addition, registered but not yet published trials were retrieved. Studies evaluating tissue-preserving therapies in men with biopsy-proven prostate cancer in the primary or salvage setting were included. EVIDENCE SYNTHESIS: A total of 2350 cases were treated to date across 30 studies. Most studies were retrospective with variable standards of reporting, although there was an increasing number of prospective registered trials. Focal therapy was mainly delivered to men with low and intermediate disease, although some high-risk cases were treated that had known, unilateral, significant cancer. In most of the cases, biopsy findings were correlated to specific preoperative imaging, such as multiparametric magnetic resonance imaging or Doppler ultrasound to determine eligibility. Follow-up varied between 0 and 11.1 yr. In treatment-naïve prostates, pad-free continence ranged from 95% to 100%, erectile function ranged from 54% to 100%, and absence of clinically significant cancer ranged from 83% to 100%. In focal salvage cases for radiotherapy failure, the same outcomes were achieved in 87.2-100%, 29-40%, and 92% of cases, respectively. Biochemical disease-free survival was reported using a number of definitions that were not validated in the focal-therapy setting. CONCLUSIONS: Our systematic review highlights that, when focal therapy is delivered with intention to treat, the perioperative, functional, and disease control outcomes are encouraging within a short- to medium-term follow-up. Focal therapy is a strategy by which the overtreatment burden of the current prostate cancer pathway could be reduced, but robust comparative effectiveness studies are now required.