864 resultados para flood risk,intermediate-complexity model,climate change adaptation
Resumo:
The archipelago of Cape Verde is made up of ten islands and nine islets and is located between latitudes 14º 28' N and 17º 12' N and longitudes 22º 40' W and 25º 22' W. It is located approximately 500 km from the Senegal coast in West Africa (Figure 1). The islands are divided into two groups: Windward and Leeward. The Windward group is composed of the islands of Santo Antão, São Vicente, Santa Luzia, São Nicolau, Sal and Boavista; and the Leeward group is composed of the islands Maio, Santiago, Fogo and Brava. The archipelago has a total land surface of 4,033 km2 and an Economic Exclusive Zone (ZEE) that extends for approximately 734,000 km2. In general, the relief is very steep, culminating with high elevations (e.g. 2,829 m on Fogo and 1,979 m on Santo Antão). The surface area, geophysical configuration and geology vary greatly from one island to the next. Cape Verde, due to its geomorphology, has a dense and complex hydrographical network. However, there are no permanent water courses and temporary water courses run only during the rainy season. These temporary water courses drain quickly towards the main watersheds, where, unless captured by artificial means, continue rapidly to lower areas and to the sea. This applies equally to the flatter islands. The largest watershed is Rabil with an area of 199.2 km2. The watershed areas on other islands extend over less than 70 km2. Cape Verde is both a least developed country (LDC) and a small island development state (SIDS). In 2002, the population of Cape Verde was estimated at approximately 451,000, of whom 52% were women and 48% men. The population was growing at an average 2.4% per year, and the urban population was estimated at 53.7 %. Over the past 15 years, the Government has implemented a successful development strategy, leading to a sustained economic growth anchored on development of the private sector and the integration of Cape Verde into the world economy. During this period, the tertiary sector has become increasingly important, with strong growth in the tourism, transport, banking and trade sectors. Overall, the quality of life indicators show substantial improvements in almost all areas: housing conditions, access to drinking water and sanitation, use of modern energy in both lighting and cooking, access to health services and education. Despite these overall socio-economic successes, the primary sector has witnessed limited progress. Weak performance in the primary sector has had a severe negative impact on the incomes and poverty risks faced by rural workers1. Moreover, relative poverty has increased significantly during the past decade. The poverty profile shows that: (i) extreme poverty is mostly found in rural areas, although it has also increased in urban areas; (ii) poverty is more likely to occur when the head of the household is a woman; (iii) poverty increases with family size; (iv) education significantly affects poverty; (v) the predominantly agricultural islands of Santo Antão and Fogo have the highest poverty rates; (vi) unemployment affects the poor more than the nonpoor; (vii) agriculture and fisheries workers are more likely to be poor than those in other sectors. Therefore, the fight against poverty and income inequalities remains one of the greatest challenges for Cape Verde authorities. The various governments of Cape Verde over the last decade have demonstrated a commitment to improving governance, notably by encouraging a democratic culture that guarantees stability and democratic changes without conflicts. This democratic governance offers a space for a wider participation of citizens in public management and consolidates social cohesion. However, there are some remaining challenges related to democratic governance and the gains must be systematically monitored. Finally, it is worth emphasizing that the country’s insularity has stimulated a movement to decentralized governance, although social inequalities and contrasts from one island to the next constitute, at the same time, challenges and opportunities.
Resumo:
Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range and spatial resolution of data used in making these models, different rates of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across-scale comparisons have been made using data of different resolution and geographic extent. Here, we assess whether climate-change induced habitat losses predicted at the European scale (10x10' grid cells) are also predicted from local scale data and modeling (25x25m grid cells) in two regions of the Swiss Alps. We show that local-scale models predict persistence of suitable habitats in up to 100% of species that were predicted by a European-scale model to lose all their suitable habitats in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine-grain elevation range within 10x10' cells. The greatest prediction discrepancy for alpine species occurs in the area with the largest nival zone. Our results suggest elevation range as the main driver for the observed prediction discrepancies. Local scale projections may better reflect the possibility for species to track their climatic requirement toward higher elevations.
Resumo:
The objective of this work was to assess the potential impact of climate change on the spatial distribution of coffee nematodes (races of Meloidogyne incognita) and leaf miner (Leucoptera coffeella), using a Geographic Information System. Assessment of the impacts of climate change on pest infestations and disease epidemics in crops is needed as a basis for revising management practices to minimize crop losses as climatic conditions shift. Future scenarios focused on the decades of the 2020's, 2050's, and 2080's (scenarios A2 and B2) were obtained from five General Circulation Models available on Data Distribution Centre from Intergovernmental Panel on Climate Change. Geographic distribution maps were prepared using models to predict the number of generations of the nematodes and leaf miner. Maps obtained in scenario A2 allowed prediction of an increased infestation of the nematode and of the pest, due to greater number of generations per month, than occurred under the climatological normal from 1961-1990. The number of generations also increased in the B2 scenario, but was lower than in the A2 scenario for both organisms.
Resumo:
The objective of this work was to simulate maize leaf development in climate change scenarios at Santa Maria, RS, Brazil, considering symmetric and asymmetric increases in air temperature. The model of Wang & Engel for leaf appearance rate (LAR), with genotype-specific coefficients for the maize variety BRS Missões, was used to simulate tip and expanded leaf accumulated number from emergence to flag leaf appearance and expansion, for nine emergence dates from August 15 to April 15. LAR model was run for each emergence date in 100-year climate scenarios: current climate, and +1, +2, +3, +4 and +5°C increase in mean air temperature, with symmetric and asymmetric increase in daily minimum and maximum air temperature. Maize crop failure due to frost decreased in elevated temperature scenarios, in the very early and very late emergence dates, indicating a lengthening in the maize growing season in warmer climates. The leaf development period in maize was shorter in elevated temperature scenarios, with greater shortening in asymmetric temperature increases, indicating that warmer nights accelerate vegetative development in maize.
Resumo:
The objective of this work was to evaluate the effect of the temperature increase forecasted by the Intergovernmental Panel on Climate Change (IPCC) on agricultural zoning of cotton production in Brazil. The Northeastern region showed the highest decrease in the low-risk area for cotton cultivation due to the projected temperature increase. This area in the Brazilian Northeast may decrease from 83 million ha in 2010 to approximately 71 million ha in 2040, which means 15% reduction in 30 years. Southeastern and Center-Western regions had small decrease in areas suitable for cotton production until 2040, while the Northern region showed no reduction in these areas. Temperature increase will not benefit cotton cultivation in Brazil because dimension of low-risk areas for economic cotton production may decrease.
Resumo:
The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition.
Resumo:
Climate change acts as a major new selective agent on many organisms, particularly at high latitudes where climate change is more pronounced than at lower latitudes. Studies are required to predict which species are at a high risk of extinction and whether certain phenotypes may be more affected by climate change than others. The identification of susceptible phenotypes is important for evaluating the potential negative effect of climate change on biodiversity at the inter- and intraspecific levels. Melanin-based coloration is an interesting and easily accessible candidate trait because, within certain species, reddish pheomelanin-based coloration is associated with adaptations to warm climates. However, it is unclear whether the same holds among species. We tested one prediction of this hypothesis in four owl genera (wood, scops, screech, and pygmy owls), namely that darker reddish species are more prevalent near the equator than polewards. Our comparative analysis is consistent with this prediction for the northern hemisphere, suggesting that pale reddish species may be adapted to cold climates and dark reddish species to warmer climates. Thus, climate change may have a larger negative impact on pale pheomelanic owls and favour dark pheomelanic species.
Resumo:
This article draws on empirical material to reflect on what drives rapid change in flood risk management practice, reflecting wider interest in the way that scientific practices make risk landscapes and a specific focus on extreme events as drivers of rapid change. Such events are commonly referred to as a form of creative destruction, ones that reveal both the composition of socioenvironmental assemblages and provide a creative opportunity to remake those assemblages in alternate ways, therefore rapidly changing policy and practice. Drawing on wider thinking in complexity theory, we argue that what happens between events might be as, if not more, important than the events themselves. We use two empirical examples concerned with flood risk management practice: a rapid shift in the dominant technologies used to map flood risk in the United Kingdom and an experimental approach to public participation tested in two different locations, with dramatically different consequences. Both show that the state of the socioenvironmental assemblage in which the events take place matters as much as the magnitude of the events themselves. The periods between rapid changes are not simply periods of discursive consolidation but involve the ongoing mutation of such assemblages, which could either sensitize or desensitize them to rapid change. Understanding these intervening periods matters as much as the events themselves. If events matter, it is because of the ways in which they might bring into sharp focus the coding or framing of a socioenvironmental assemblage in policy or scientific practice irrespective of whether or not those events evolve the assemblage in subtle or more radical ways.
Resumo:
This special issue of Natural Hazards and Earth System Sciences (NHESS) contains eight papers presented as oral or poster contributions in the Natural Hazards NH-1.2 session on"Extreme events induced by weather and climate change: evaluation, forecasting and proactive planning", held at the European Geosciences Union (EGU) General Assembly in Vienna, Austria, on 13-18 April 2008. The aim of the session was to provide an international forum for presenting new results and for discussing innovative ideas and concepts on extreme hydro-meteorological events, including: (i) the assessment of the risk posed by the extreme events, (ii) the expected changes in the frequency and intensity of the events driven by a changing climate and by multiple human- induced causes, (iii) new modelling approaches and original forecasting methods to predict extreme events and their consequences, and (iv) strategies for hazard mitigation and risk reduction, and for a improved adaptation to extreme hydro-meteorological events ...
Resumo:
Mountain ecosystems have been less adversely affected by invasions of non-native plants than most other ecosystems, partially because most invasive plants in the lowlands are limited by climate and cannot grow under harsher high-elevation conditions. However, with ongoing climate change, invasive species may rapidly move upwards and threaten mid- then high-elevation mountain ecosystems. We evaluated this threat by predicting current and future potential distributions of 48 invasive plant species distributed in Switzerland (CH) and New South Wales (NSW), two areas where climate interacts differently with the elevation gradient. Using a species distribution modeling approach combining two scales, which builds on high-resolution data (< 250 m) but accounts for the global climatic niche of species, we found that different environmental drivers limit the elevation range of invasive species in the two regions, leading to region-specific species responses to climate change. Whereas the optimal suitability for plant invaders is predicted to markedly shift from the lowland to the montane or subalpine zone in CH, such an upward shift is far less pronounced in NSW where montane and subalpine elevations are currently already suitable. Non-native species able to invade the upper reaches of mountains in a future climate will be cold-tolerant in the Swiss Alps but preferring wet soils in the Australian Alps. Other plant traits were only marginally associated with elevation limits. These results demonstrate that a more systematic consideration of future distributions of invasive species is required in conservation plans of not yet invaded mountainous ecosystems.
Resumo:
Climate change affects the rate of insect invasions as well as the abundance, distribution and impacts of such invasions on a global scale. Among the principal analytical approaches to predicting and understanding future impacts of biological invasions are Species Distribution Models (SDMs), typically in the form of correlative Ecological Niche Models (ENMs). An underlying assumption of ENMs is that species-environment relationships remain preserved during extrapolations in space and time, although this is widely criticised. The semi-mechanistic modelling platform, CLIMEX, employs a top-down approach using species ecophysiological traits and is able to avoid some of the issues of extrapolation, making it highly applicable to investigating biological invasions in the context of climate change. The tephritid fruit flies (Diptera: Tephritidae) comprise some of the most successful invasive species and serious economic pests around the world. Here we project 12 tephritid species CLIMEX models into future climate scenarios to examine overall patterns of climate suitability and forecast potential distributional changes for this group. We further compare the aggregate response of the group against species-specific responses. We then consider additional drivers of biological invasions to examine how invasion potential is influenced by climate, fruit production and trade indices. Considering the group of tephritid species examined here, climate change is predicted to decrease global climate suitability and to shift the cumulative distribution poleward. However, when examining species-level patterns, the predominant directionality of range shifts for 11 of the 12 species is eastward. Most notably, management will need to consider regional changes in fruit fly species invasion potential where high fruit production, trade indices and predicted distributions of these flies overlap.
Resumo:
Risk analysis of climate change on plant diseases has great importance for agriculture since it allows the evaluation of management strategies to minimize future damages. This work aimed to simulate future scenarios of coffee rust (Hemileia vastatrix) epidemics by elaborating geographic distribution maps using a model that estimates the pathogen incubation period and the output from three General Circulation Models (CSIRO-Mk3.0, INM-CM3.0, and MIROC3.2.medres). The climatological normal from 1961-1990 was compared with that of the decades 2020s, 2050s and 2080s using scenarios A2 and B1 from the IPCC. Maps were prepared with a spatial resolution of 0.5 × 0.5 degrees of latitude and longitude for ten producing states in Brazil. The climate variables used were maximum and minimum monthly temperatures. The maps obtained in scenario A2 showed a tendency towards a reduction in the incubation period when future scenarios are compared with the climatological normal from 1961-1990. A reduction in the period was also observed in scenario B1, although smaller than that in scenario A2.