842 resultados para farm accountancy data network
Resumo:
In this paper, we investigate content-centric data transmission in the context of short opportunistic contacts and base our work on an existing content-centric networking architecture. In case of short interconnection times, file transfers may not be completed and the received information is discarded. Caches in content-centric networks are used for short-term storage and do not guarantee persistence. We implemented a mechanism to extend caching on persistent storage enabling the completion of disrupted content transfers. The mechanisms have been implemented in the CCNx framework and have been evaluated on wireless mesh nodes. Our evaluations using multicast and unicast communication show that the implementation can support content transfers in opportunistic environments without significant processing and storing overhead.
Resumo:
For smart cities applications, a key requirement is to disseminate data collected from both scalar and multimedia wireless sensor networks to thousands of end-users. Furthermore, the information must be delivered to non-specialist users in a simple, intuitive and transparent manner. In this context, we present Sensor4Cities, a user-friendly tool that enables data dissemination to large audiences, by using using social networks, or/and web pages. The user can request and receive monitored information by using social networks, e.g., Twitter and Facebook, due to their popularity, user-friendly interfaces and easy dissemination. Additionally, the user can collect or share information from smart cities services, by using web pages, which also include a mobile version for smartphones. Finally, the tool could be configured to periodically monitor the environmental conditions, specific behaviors or abnormal events, and notify users in an asynchronous manner. Sensor4Cities improves the data delivery for individuals or groups of users of smart cities applications and encourages the development of new user-friendly services.
Resumo:
This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.
Resumo:
High-throughput assays, such as yeast two-hybrid system, have generated a huge amount of protein-protein interaction (PPI) data in the past decade. This tremendously increases the need for developing reliable methods to systematically and automatically suggest protein functions and relationships between them. With the available PPI data, it is now possible to study the functions and relationships in the context of a large-scale network. To data, several network-based schemes have been provided to effectively annotate protein functions on a large scale. However, due to those inherent noises in high-throughput data generation, new methods and algorithms should be developed to increase the reliability of functional annotations. Previous work in a yeast PPI network (Samanta and Liang, 2003) has shown that the local connection topology, particularly for two proteins sharing an unusually large number of neighbors, can predict functional associations between proteins, and hence suggest their functions. One advantage of the work is that their algorithm is not sensitive to noises (false positives) in high-throughput PPI data. In this study, we improved their prediction scheme by developing a new algorithm and new methods which we applied on a human PPI network to make a genome-wide functional inference. We used the new algorithm to measure and reduce the influence of hub proteins on detecting functionally associated proteins. We used the annotations of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as independent and unbiased benchmarks to evaluate our algorithms and methods within the human PPI network. We showed that, compared with the previous work from Samanta and Liang, our algorithm and methods developed in this study improved the overall quality of functional inferences for human proteins. By applying the algorithms to the human PPI network, we obtained 4,233 significant functional associations among 1,754 proteins. Further comparisons of their KEGG and GO annotations allowed us to assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false discovery rates of <21% for KEGG and <30% for GO. We clustered 1,729 proteins by their functional associations and made pathway analysis to identify several subclusters that are highly enriched in certain signaling pathways. Particularly, we performed a detailed analysis on a subcluster enriched in the transforming growth factor β signaling pathway (P<10-50) which is important in cell proliferation and tumorigenesis. Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and provides a reliable method for large-scale functional annotations in this post-genomic era.
Resumo:
BACKGROUND Recently, two simple clinical scores were published to predict survival in trauma patients. Both scores may successfully guide major trauma triage, but neither has been independently validated in a hospital setting. METHODS This is a cohort study with 30-day mortality as the primary outcome to validate two new trauma scores-Mechanism, Glasgow Coma Scale (GCS), Age, and Pressure (MGAP) score and GCS, Age and Pressure (GAP) score-using data from the UK Trauma Audit and Research Network. First, an assessment of discrimination, using the area under the receiver operating characteristic (ROC) curve, and calibration, comparing mortality rates with those originally published, were performed. Second, we calculated sensitivity, specificity, predictive values, and likelihood ratios for prognostic score performance. Third, we propose new cutoffs for the risk categories. RESULTS A total of 79,807 adult (≥16 years) major trauma patients (2000-2010) were included; 5,474 (6.9%) died. Mean (SD) age was 51.5 (22.4) years, median GCS score was 15 (interquartile range, 15-15), and median Injury Severity Score (ISS) was 9 (interquartile range, 9-16). More than 50% of the patients had a low-risk GAP or MGAP score (1% mortality). With regard to discrimination, areas under the ROC curve were 87.2% for GAP score (95% confidence interval, 86.7-87.7) and 86.8% for MGAP score (95% confidence interval, 86.2-87.3). With regard to calibration, 2,390 (3.3%), 1,900 (28.5%), and 1,184 (72.2%) patients died in the low, medium, and high GAP risk categories, respectively. In the low- and medium-risk groups, these were almost double the previously published rates. For MGAP, 1,861 (2.8%), 1,455 (15.2%), and 2,158 (58.6%) patients died in the low-, medium-, and high-risk categories, consonant with results originally published. Reclassifying score point cutoffs improved likelihood ratios, sensitivity and specificity, as well as areas under the ROC curve. CONCLUSION We found both scores to be valid triage tools to stratify emergency department patients, according to their risk of death. MGAP calibrated better, but GAP slightly improved discrimination. The newly proposed cutoffs better differentiate risk classification and may therefore facilitate hospital resource allocation. LEVEL OF EVIDENCE Prognostic study, level II.
Resumo:
In this work, we propose a novel network coding enabled NDN architecture for the delivery of scalable video. Our scheme utilizes network coding in order to address the problem that arises in the original NDN protocol, where optimal use of the bandwidth and caching resources necessitates the coordination of the forwarding decisions. To optimize the performance of the proposed network coding based NDN protocol and render it appropriate for transmission of scalable video, we devise a novel rate allocation algorithm that decides on the optimal rates of Interest messages sent by clients and intermediate nodes. This algorithm guarantees that the achieved flow of Data objects will maximize the average quality of the video delivered to the client population. To support the handling of Interest messages and Data objects when intermediate nodes perform network coding, we modify the standard NDN protocol and introduce the use of Bloom filters, which store efficiently additional information about the Interest messages and Data objects. The proposed architecture is evaluated for transmission of scalable video over PlanetLab topologies. The evaluation shows that the proposed scheme performs very close to the optimal performance
Resumo:
Fertility-preservation techniques for medical reasons are increasingly offered in national networks. Knowledge of the characteristics of counselled patients and techniques used are essential. The FertiPROTEKT network registry was analysed between 2007 and 2013, and included up to 85 university and non-university centres in Germany, Austria and Switzerland; 5159 women were counselled and 4060 women underwent fertility preservation. In 2013, fertility-preservation counselling for medical reasons increased significantly among nullipara and women aged between 21 and 35 years (n = 1043; P < 0.001). Frequency of GnRH applications slowly decreased, whereas tissue, oocytes and zygote cryopreservation increased. In 2013, women with breast cancer mainly opted for tissue freezing, whereas women with lymphoma opted for GnRH agonist. Women younger than 20 years predominantly opted for GnRH agonists and ovarian tissue cryopreservation; women aged between 20 and 40 years underwent a variety of techniques; and women over 40 years opted for GnRH agonists. The average number of aspirated oocytes per stimulation cycle decreased as age increased (< 30 years: 12.9; 31-35 years: 12.3; 36-46: 9.0; > 41 years: 5.7). For ovarian tissue cryopreservation, removal and cryopreservation of fewer than one ovary was preferred and carried out in 97% of cases in 2013.
Resumo:
Since its inception in 1946, Iowa State University’s (ISU) Western Research Farm (WRF) has fulfilled its original stated objective of “careful research giving definite answers to specific problems.” In continuing with that tradition, the WRF joined the Onfarm Research Network of the ISU Corn and Soybean Initiative (CSI) and started conducting on-farm trials with participating local producers during the 2010 growing season.
Introduction to the data library PANGAEA - Publishing Network for Geoscientific & Environmental Data
Resumo:
A large scale Chinese agricultural survey was conducted at the direction of John Lossing Buck from 1929 through 1933. At the end of the 1990’s, some parts of the original micro data of Buck’s survey were discovered at Nanjing Agricultural University. An international joint study was begun to restore micro data of Buck’s survey and construct parts of the micro database on both the crop yield survey and special expenditure survey. This paper includes a summary of the characteristics of farmlands and cropping patterns in crop yield micro data that covered 2,102 farmers in 20 counties of 9 provinces. In order to test the classical hypothesis of whether or not an inverse relationship between land productivity and cultivated area may be observed in developing countries, a Box-Cox transformation test was conducted for functional forms on five main crops of Buck’s crop yield survey. The result of the test shows that the relationship between land productivity and cultivated areas of wheat and barley is linear and somewhat negative; those of rice, rapeseed, and seed cotton appear to be slightly positive. It can be tentatively concluded that the relationship between cultivated area and land productivity are not the same among crops, and the difference of labor intensity and the level of commercialization of each crop may be strongly related to the existence or non-existence of inverse relationships.
Resumo:
This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN) for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR) image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then supplied to the HNN optimization approach. The goal is to improve the classification results obtained by the Wishart approach. The classification improvement is verified by computing a cluster separability coefficient and a measure of homogeneity within the clusters. During the HNN optimization process, for each iteration and for each pixel, two consistency coefficients are computed, taking into account two types of relations between the pixel under consideration and its corresponding neighbors. Based on these coefficients and on the information coming from the pixel itself, the pixel under study is re-classified. Different experiments are carried out to verify that the proposed approach outperforms other strategies, achieving the best results in terms of separability and a trade-off with the homogeneity preserving relevant structures in the image. The performance is also measured in terms of computational central processing unit (CPU) times.
Resumo:
Complex networks have been extensively used in the last decade to characterize and analyze complex systems, and they have been recently proposed as a novel instrument for the analysis of spectra extracted from biological samples. Yet, the high number of measurements composing spectra, and the consequent high computational cost, make a direct network analysis unfeasible. We here present a comparative analysis of three customary feature selection algorithms, including the binning of spectral data and the use of information theory metrics. Such algorithms are compared by assessing the score obtained in a classification task, where healthy subjects and people suffering from different types of cancers should be discriminated. Results indicate that a feature selection strategy based on Mutual Information outperforms the more classical data binning, while allowing a reduction of the dimensionality of the data set in two orders of magnitude
Resumo:
Over the last ten years, Salamanca has been considered among the most polluted cities in México. This paper presents a Self-Organizing Maps (SOM) Neural Network application to classify pollution data and automatize the air pollution level determination for Sulphur Dioxide (SO2) in Salamanca. Meteorological parameters are well known to be important factors contributing to air quality estimation and prediction. In order to observe the behavior and clarify the influence of wind parameters on the SO2 concentrations a SOM Neural Network have been implemented along a year. The main advantages of the SOM is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. The results show a significative correlation between pollutant concentrations and some environmental variables.
Resumo:
Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.