997 resultados para external morphology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physicochemical properties and morphology of spongolite, a fibrous hollow material from Mato Grosso do Sul State (Brazil) have been studied. The results of thermal analysis, scanning electron microscopy (SEM), X-ray diffraction and NMR spectroscopy indicated that external and internal surfaces of silica spicules are covered by silica gel layers. The water evolved in the range 120-350degreesC is the result of silanol groups condensation to siloxane bonds. Total homogenization of the needles is achieved by heating spongolite over 900degreesC. This mineral may be considered as a natural composite material containing surface-immobilized reactive species. The presence of active silica gel layers opens the possibilities of attaching functional groups to spongolite surface. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A alimentação é um importante fator para o sucesso no cultivo larval de espécies de caranguejos. Informações sobre as características morfológicas do estômago podem contribuir para revelar o comportamento alimentar larval ou, se há lecitotrofia em algum, ou até mesmo, em todos os estágios do ciclo larval. No presente estudo, o desenvolvimento estrutural do estômago e as funções digestivas foram examinados em larvas de duas espécies de braquiúros, Uca vocator e Panopeus occidentalis, cultivados em laboratório. Durante o desenvolvimento larval, os estômagos das larvas no primeiro e último estágio de zoea e megalopa foram microscopicamente examinados, descritos e ilustrados. Em ambas espécies, o estômago dos estágios de zoea são desenvolvidos e especializados, apresentando uma válvula cardiopilórica e um filtro pilórico funcionais. Oestágio de megalopa possui um moinho gástrico complexo e especializado semelhante àquele encontrado em caranguejos adultos com o aparecimento de estruturas rígidas e calcificadas. Estes resultados apóiam a hipótese de que o comportamento alimentar de cada estágio larval está diretamente relacionado à estrutura morfológica do estômago. Tal fato, fortemente indica que todos os estágios larvais de ambos U. vocator e P. occidentalis necessitam de uma fonte externa de alimento para completar o desenvolvimento larval no ambiente planctônico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myxidium volitans sp. nov. (Myxozoa: Myxidiidae) parasitizing the hypertrophied green-brownish gallbladder of the teleost Dactylopterus volitans, collected in the Atlantic coast near Niterói, Brazil was described based on ultrastructural studies. The spores were fusiform, sometimes slightly crescent-shaped on average 21.7 ± 0.3 µm (mean ± standard deviation) (n = 50) long and 5.6 ± 0.4 µm (n = 30) wide. The spore wall was thin and smooth, comprising two equally-sized valves joined by a hardly visible sutural ridge. Spores containing two pyriform polar capsules (PC) (5.0 ± 0.4 × 2.3 ± 0.3 µm) (n = 30) are situated in each extremity of the spore. The PC wall was composed of hyaline layer (0.20-0.29 µm thick) and by a thin external granular layer. Each PC contains a polar filament (PF) with irregular arrangements that was projected from its apical region to the bases of PC and coiled laterally from bases to the tip of PC. Some regular striations and S-like structures in the periphery of the PFs with four-five irregular sections were observed. Based on the spore morphology, ultrastructural differences and the specificity of the host we describe this parasite as a new myxosporidian, named M. volitans sp. nov.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gross morphology of the gas bladder is described and compared for representatives of all valid genera of Pseudopimelodidae (Siluriformes). Cephalosilurus albomarginatus and species of Batrochoglanis, and Microglanis have the most basic form: a large, cordiform gas bladder with a simple internal T-shaped septum. Cephalosilurus apurensis, C. fowleri, and C. nigricauda also have a large, cordiform gas bladder, but they have well-developed trabeculae associated with the internal T-shaped septum, and a pair of well-developed constrictor muscles inserted on the external wall; the latter feature is present in most species of Pimelodidae, but absent in all other catfishes. The monotypic Lophiosilurus alexandri also has well-developed constrictor muscles, and its gas bladder is moderately sized. The species of Pseudopimelodus and Cruciglanis have a diminutive gas bladder partially divided into two lateral sacs without internal communication, and lack constrictor muscles. The parapophysis of the fourth vertebra is a wide and long shelf connected to the dorsal surface of the gas bladder in most pseudopimelodid genera. However, in the species of Pseudopimelodus and Cruciglanis the parapophysis of the fourth vertebra is shorter and has its anterior ramus folded back, partially covering the gas bladder anteroventrally; and the tympanic opening is smaller than in species of the other genera. Five phylogenetic characters are proposed based on the morphology of the gas bladder and associated structures in species of Pseudopimelodidae, and the evolution of those characters in the family is discussed. J. Morphol. 272:890-896, 2011. (C) 2011 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clay-containing nanocomposites of polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) copolymers having cylindrical domains were obtained by melt extrusion using a tape die. One type of sample (SEBS-MA) had maleic anhydride attached to the middle block. Two types of organoclays were added, namely Cloisite 20A and Cloisite 30B. Small angle X-ray scattering and transmission electron microscopy (TEM) analyses showed that the addition of 20A clay to SEBS and SEBS-MA resulted in nanocomposites with intercalated and partially exfoliated structures, respectively. The addition of 30B clay to SEBS and SEBS-MA promoted the formation of composites containing relatively large micron-sized and partially exfoliated clay particles, respectively. Our TEM analysis revealed that clay particles embedded in SEBS are preferably in contact with the polystyrene cylindrical domains, while in SEBS-MA they are in contact with the maleated matrix. The extrusion processing promoted alignment of the axes of the polystyrene cylinders along the extrusion direction in all samples, and the basal planes of the clay particles were mostly parallel to the main external surfaces of the extruded tapes. © 2013 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi-cation via photosynthesis-induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME) was higher than the external seawater (pHSW) at all pHSW levels investigated, and the difference (i.e., pHME-pHSW) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg) inside the microenvironment increased with decreasing pHSW, but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4-7.5), suggesting a greater dependence on membrane-bound CA for the dehydration of HCO3- ions during dissolved inorganic carbon uptake at the higher pHSW. In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The as-cast three-dimensional morphologies of alpha-Al-15(Fe,Mn)(3)Si-2 and beta-Al5FeSi intermetallics were investigated by serial sectioning. Large beta-Al5FeSi intermetallics were observed to grow around pre-existing dendrite arms. The alpha-Al-15(Fe,Mn)(3)Si-2 intermetallic particle was observed to have a central polyhedral particle and an external highly convoluted three-dimensional structure. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solution culture experiment was conducted to examine the effect of Cu toxicity on Rhodes grass (Chloris gayana Knuth.), a pasture species used in mine-site rehabilitation. The experiment used dilute, solution culture to achieve external nutrient concentrations, which were representative of the soil solution, and an ion exchange resin to maintain stable concentrations of Cu in solution. Copper toxicity was damaging to plant roots, with symptoms ranging from disruption of the root cuticle and reduced root hair proliferation, to severe deformation of root structure. A reduction in root growth was observed at an external Cu concentration of < 1 mu M, with damage evident from an external concentration of 0.2 mu M. Critical to the success of this experiment, in quantitatively examining the relationship between external Cu concentration and plant response, was the use of ion exchange resin to buffer the concentration of Cu in solution. After some initial difficulty with pH control, stable concentrations of Cu in solution were maintained for the major period of plant growth. The development of this technique will facilitate future investigations of the effect of heavy metals on plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solution culture experiment was conducted to examine the effect of Cu toxicity on Rhodes grass (Chloris gayana), a pasture species used in mine site rehabilitation. The experiment used dilute, solution culture to achieve external nutrient concentrations which were representative of the soil solution, and ion exchange resins to maintain stable concentrations of Cu in solution. Copper toxicity was damaged plant roots, with symptoms ranging from disruption of the root cuticle and reduced root hair proliferation, to severe deformation of root structure. A reduction in root growth was observed at an external Cu concentration of

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.