825 resultados para estradiol
Resumo:
Abstracts : The development of analytic methods more selective and sensitive is of great importance for a better quality in the determination of chemical species, therefore increasing the reliability of the results. In this way, the optimization of separation/concentration is still necessary. The use of Molecularly Imprinted Polymers - MIPs have demonstrated to be an efficient tool of analysis with a great potential in minimizing limitations of separation/concentration techniques traditionally employed. In general, the MIPs are obtained by polymerization in the presence of a template to be imprinted so that a polymeric skeleton is formed around the future analyte. In the present work, the template used is Estradiol Valerate (EV), compound used in the hormone replacement therapy (HRT) during climacteric. After the polymerization in bulk and in an anaerobic environment using MAA, EGDMA, AIBN, acetonitrile and VE, the obtained MIP was powdered, sifted (<120 μm) and placed in a soxhlet system containing ethanol at 60 °C, in order to remove the imprinted molecule through six successive washes in periods of 24 hours. The water used in the washings was analyzed using HPLC and spectrophotometry UV/Vis. Then, the obtained MIP was dried at room temperature and 150 mg was inset in SPE cartridges in order to evaluate the polymer's efficiency in the analyte pre-concentration and extraction. To do so, 100,0 mL of VE standard solution (2mg L-1) were pre-concentrated at 4,0 mL min-1 and eluted with 10,0 mL ethanol at 1,0 mL min-1, obtaining recoveries of 53%. Additionally, a NIP (non-imprinting polymer) was prepared to compare the obtained results, in which the recovery was 80%. In the same way, studies were conducted using commercial Strata™-X cartridges, obtaining 53% recovery. Since, the results did not reflect that than was expected, in relation with the MIP efficiency in the recovery, a computational ...
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated estradiol benzoate effects on oocytes/embryos recovery rate and the influence of this drug on the hematopoietic system. Twenty four bitches were divided in two groups, Group I, 12 females that received a single shot of estradiol benzoate, 0.2 mg/kg intramuscularly, between 2 and 7 days after the date of the last mismating or insemination and, Group II (control), 12 bitches that received 0.2 ml/kg of oily diluent, in corresponding dates. The bitches were ovary-hysterectomized and the uterus/oviduct were isolated and flushed with a PBS, heparin and polyvinyl alcohol solution. Oocytes and embryos were quantified and classified according to their stage of development. Blood counts were performed on M1 (before drug administration), M2 (15 days after drug administration) and M3 (40 days after drug administration). Pearson correlation coefficient was used to analyze the variable retrieval structures, while Fisher exact test was used for the analysis of embryonic viability. ANOVA was used to analyze repeated measurements and Tukey test for hematological parameters. All tests were performed at 5% significance level. The recovery rate of total structures in group I was lower (22.88%) than group II (65.85%). A lower embryo recovery (ratio 3: 52) rate and a greater number of degenerated structures (ratio 11: 1) were observed in group I. Hematological parameters showed significant difference in erythrocytes, hematocrit and hemoglobin concentrations 15 days after drug administration and difference in leukocytes concentration 40 days after using the medication in bitches of group I, however, at the end of the experiment all bitches had blood counts considered normal.
Resumo:
This work aimed to evaluate the pregnancy rate and follicular diameter using EB or GnRH on the insertion of progesterone implant (D0) in lactating beef cows. Two groups were tested in two experiments. In Exp. 1 were used 61 Nelore cows divided into two groups: G-BE (n = 32) and G-GnRH (n = 29), on D0 was inserted P4 implant (CIDR ) and applied 2 mL of BE (G-BE) or 2.5 mL GnRH (G-GnRH). In D9 was performed ultrasonography (U.S.) to measure the diameter of the dominant follicle (DF) present in the ovary and the implant was removed, with concomitant administration of 2.5 mL of PGF2a and estradiol cypionate (ECP ) followed by calves removal. After 48 hours all the cows were inseminated and the calves returned. In Exp. 2 50 cows were used following the same protocol described above, but the pregnancy was assessed without performing ovarian US. There was no difference (p>0.05) in pregnancy rate between treatments, BE (55%) or GnRH (41%), but the follicular diameter was significantly higher (p<0.05) in pregnant cows treated with EB (10.7 mm vs. 8.5 mm) and in cows treated with GnRH there was no difference (p>0.05) between pregnant and no pregnant cows (11.6 mm vs. 10.2 mm). We concluded the use of GnRH on D0 did not improve the pregnancy rate in lactating beef cows and follicular diameter was greater (p <0.05) in pregnant cows compared to non-pregnant only in G-BE.
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
The effects of estradiol benzoate (EB) and estradiol cypionate (EC) on induction of ovulation after a synchronized LH surge and on fertility of Bos indicus females submitted to timed AI (TAI) were evaluated. In Experiment 1, ovariectomized Nelore heifers were used to evaluate the effect of EB (n = 5) and EC (n = 5) on the circulating LH profile. The LH surge timing (19.6 and 50.5 h; P = 0.001), magnitude (20.5 and 9.4 ng/mL; P = 0.005), duration (8.6 and 16.5 h; P = 0.001), and area under the LH curve (158.6 and 339.4 ng/mL; P = 0.01) differed between the EB and EC treatments, respectively. In Experiment 2 (follicular responses; n = 60) and 3 (pregnancy per AI; P/AI; n = 953) suckled Bos indicus beef cows submitted to an estradiol/progesterone-based synchronization protocol were assigned to receive one of two treatments to induce synchronized ovulation: 1 mg of EB im 24 h after progesterone (P4) device removal or 1 mg of EC im at P4 device removal. There was no difference (P > 0.05) between EB and EC treatments on follicular responses (maximum diameter of the ovulatory follicle, 13.1 vs. 13.9 mm; interval from progesterone device removal to ovulation, 70.2 vs. 68.5 h; and ovulation rate, 77.8 vs. 82.8%, respectively). In addition, P/AI was similar (P < 0.22) between the cows treated with EB (57.5%; 277/482) and EC (61.8%; 291/471). In conclusion, despite pharmacologic differences, both esters of estradiol administered either at P4 device removal (EC) or 24 h later (EB) were effective in inducing an LH surge which resulted in synchronized ovulations and similar P/AI in suckled Bos indicus beef cows submitted to TAI. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Clinical and experimental evidence suggest that estrogens have a major impact on cognition, presenting neurotrophic and neuroprotective actions in regions involved in such function. In opposite, some studies indicate that certain hormone therapy regimens may provoke detrimental effects over female cognitive and neurological function. Therefore, we decided to investigate how estrogen treatment would influence cognition and depression in different ages. For that matter, this study assessed the effects of chronic 17 beta-estradiol treatment over cognition and depressive-like behaviors of young (3 months old), adult (7 months old) and middle-aged (12 months old) reproductive female Wistar rats. These functions were also correlated with alterations in the serotonergic system, as well as hippocampal BDNF. 17 beta-Estradiol treatment did not influence animals' locomotor activity and exploratory behavior, but it was able to improve the performance of adult and middle-aged rats in the Morris water maze, the latter being more responsive to the treatment. Young and adult rats displayed decreased immobility time in the forced swimming test, suggesting an effect of 17 beta-estradiol also over such depressive-like behavior. This same test revealed increased swimming behavior, triggered by serotonergic pathway, in adult rats. Neurochemical evaluations indicated that 17 beta-estradiol treatment was able to increase serotonin turnover rate in the hippocampus of adult rats. Interestingly, estrogen treatment increased BDNF levels from animals of all ages. These findings support the notion that the beneficial effects of 17 beta-estradiol over spatial reference memory and depressive-like behavior are evident only when hormone therapy occurs at early ages and early stages of hormonal decline. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. Methods Twenty-four adult Wistar rats, 60 days old (+/- 250 g) were randomly divided into two groups. Control group (Co): received 0.9% NaCl 0.3 mL + 95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received vehicle + melatonin [100 μg/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a.m. Results Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. Conclusions We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.
Resumo:
Background: Variations in maternal care are associated with neonatal stress, hormonal disturbances and reproductive injuries during adulthood. However, the effects of these variations on sex hormones and steroid receptors during ovary development remain undetermined. This study aimed to investigate whether variations in maternal care are able to influence the hormonal profile, follicular dynamics and expression of AR, ER-alpha and ER-beta in the ovaries of UCh rat offspring. Methods: Twenty-four adult UCh rats, aged 120 days, were randomly divided into two groups (UChA and UChB) and mated. Maternal care was assessed from birth (day 0) to the 10th postnatal day (PND). In adulthood, twenty adult female rats (UChA and UChB offspring; n = 10/group), aged 120 days, were euthanized by decapitation during the morning estrus. Results: UChA females (providing high maternal care) more frequently displayed the behaviors of carrying pups, as well as licking/grooming and arched back nursing cares. Also, mothers providing high care had elevated corticosterone levels. Additionally, offspring receiving low maternal care showed the highest estrous cycle duration, increased corticosterone and 17beta-estradiol levels, overexpression of receptors ER-alpha and ER-beta, increased numbers of primordial, antral and mature follicles and accentuated granulosa cell proliferation. Conclusions: Our study suggests that low maternal care alters corticosterone and 17beta-estradiol levels, disrupting the estrous cycle and folliculogenesis and differentially regulating the expression of ER-alpha and ER-beta in the ovaries of adult rats.
Resumo:
The aim of the present study was to evaluate the effects of the PGF2˛treatment givenat the onset of a synchronization of ovulation protocol using a norgestomet (NORG) earimplant on ovarian follicular dynamics (Experiment 1) and pregnancy per AI (P/AI; Exper-iment 2) in cyclic (CL present) Bos indicus heifers. In Experiment 1, a total of 46 heiferswere presynchronized using two consecutive doses of PGF2˛12 days apart. At first dayof the synchronization protocol the heifers received implants containing 3 mg of NORGand 2 mg of estradiol benzoate (EB). At the same time, heifers were randomly assignedto receive 150 mg of d-cloprostenol (n = 23; PGF2˛) or no additional treatment (n = 23;Control). When the ear implants were removed 8 days later, all heifers received a PGF2˛treatment and 1 mg of EB was given 24 h later. The follicular diameter and interval toovulation were determined by transrectal ultrasonography. No effects of PGF2˛treat-ment on the diameter of the largest follicle present were observed at implant removal(PGF2˛= 9.8 ± 0.4 vs. Control = 10.0 ± 0.3 mm; P = 0.73) or after 24 h (PGF2˛= 11.1 ± 0.4 vs.Control = 11.0 ± 0.4 mm; P = 0.83). No differences in the time of ovulation after ear implantremoval (PGF2˛= 70.8 ± 1.2 vs. Control = 73.3 ± 0.9 h; P = 0.10) or in the ovulation rate(PGF2˛= 87.0 vs. Control = 82.6%; P = 0.64) between treatments were observed. In Experi-ment 2, 280 cyclic heifers were synchronized using the same experimental design describedabove (PGF2˛; n = 143 and Control; n = 137), at random day of the estrous cycle. All heifersreceived 300 IU of equine chorionic gonadotropin (eCG) and 0.5 mg of estradiol cypionate(as ovulatory stimulus) when the NORG ear implants were removed. Timed artificial insem-ination (TAI) was performed 48 h after implant removal and the pregnancy diagnosis wasconducted 30 days later. No effects on the P/AI due to PGF2˛treatment were observed(PGF2˛= 51.7 vs. Control = 57.7%; P = 0.29). In conclusion, PGF2˛treatment at the onset ofNORG-based protocols for the synchronization of ovulation did not alter the ovarian follic-ular responses or the P/AI in cyclic Bos indicus beef heifers synchronized for TAI.
Resumo:
The aim of the present study was to evaluate the LH surge after EB (estradiol benzoate) or GnRH administration with or without P4 (progesterone) pre-exposure in ovariectomized (OVX) buffalo cows. Females were randomly assigned to receive an intravaginal P4 device (D0–D9). They were then given EB 24 h or GnRH 36 h post-P4 device removal (factorial 2×2, n=6 per group). Blood collection for LH measurement began 36 h after the P4 device removal and continued at 3 h intervals. The area under the LH curve (AUC; 30.2 ng2 and 13.41 ng2; P=0.007) and the area of the LH peak (AP; 19.0 ng2 and 8.9 ng2; P=0.009) were greater for EB than GnRH. We did not observe an effect of P4 pre-exposure on the AUC and AP. Furthermore, there was no interaction between P4 pre-exposure and EB or GnRH treatment on the AUC and AP. However, there was an interaction (P<0.01) between P4 pre-exposure and the type of inducer (EB or GnRH) to release a preovulatory-like LH surge at the beginning (BP), final (FP) and time (TP) of the LH peak. The P4 pre-exposure anticipated the BP (2.5 and 7.4 h), TP (6.0 and 12.0 h) and FP (11.5 and 17.1 h) when EB was used to induce a preovulatory-like LH surge (P<0.01). However, there was no effect of P4 pre-exposure on BP (0.4 and 0.4 h), TP (3.0 and 3.0 h) and FP (5.9 and 6.1 h) with GnRH treatment. There was also no effect of the pre-exposure to P4, type of inducer or interaction on the amplitude of the LH peak. We concluded that EB therefore led to greater LH release than GnRH, and pre-exposure to P4 before EB administration anticipated the preovulatory-like LH surge in buffalo cows.
Resumo:
We have previously shown the differential expression of versican in the mouse uterus under ovarian hormone influence. We also demonstrated there is not a direct correlation between mRNA levels and protein expression, suggesting posttranscriptional events, such as alteration in mRNA stability. This posttranscriptional effect may result in the elongation and stabilization of transcripts poly(A) tail. Thus, the aim of this study was to analyze whether estradiol (E2) regulates versican mRNA stability and expression in a dose-related and time-dependent manner. For this purpose female mice were ovariectomized and treated with a single injection of 0.1 or 10 μg E2. To block transcription a group of females received a single injection of alpha-amanitin before hormone administration. Uterine tissues were collected 30 min, 1, 3, 6, 12 and 24 h after treatments and processed for quantitative real time PCR (qPCR), RACE-PAT Assay and immunohistochemistry. qPCR showed that versican mRNA levels are higher than control from 3 to 24 h after E2 administration, whereas after transcription inhibition versican mRNA unexpectedly increases within 3 h, which can be explained when transcriptional blockers alter the degradation rate of the transcript, resulting in the superinduction of this mRNA. Accordingly, analysis of versican transcript poly(A) tail evidenced a longer product 3 h after treatment, but not after 12 h. Versican immunoreaction becomes conspicuous in the superficial stroma only 3 h after E2 injection, whereas the whole stroma is immunoreactive from 6 h onward. These results demonstrate that E2 modulates versican at the transcriptional and posttranscriptional levels in a time-dependent manner.
Resumo:
Programa de doctorado: Clínica Veterinaria e Investigación Terapéutica
Resumo:
Estrogen treatment exerts a protective effect on experimental autoimmune encephalomyelitis (EAE) and is under clinical trial for multiple sclerosis therapy. Estrogens have been suspected to protect from CNS autoimmunity through their capacity to exert anti-inflammatory as well as neuroprotective effects. Despite the obvious impacts of estrogens on the pathophysiology of multiple sclerosis and EAE, the dominant cellular target that orchestrates the anti-inflammatory effect of 17β-estradiol (E2) in EAE is still ill defined. Using conditional estrogen receptor (ER) α-deficient mice and bone marrow chimera experiments, we show that expression of ERα is critical in hematopoietic cells but not in endothelial ones to mediate the E2 inhibitory effect on Th1 and Th17 cell priming, resulting in EAE protection. Furthermore, using newly created cell type-specific ERα-deficient mice, we demonstrate that ERα is required in T lymphocytes, but neither in macrophages nor dendritic cells, for E2-mediated inhibition of Th1/Th17 cell differentiation and protection from EAE. Lastly, in absence of ERα in host nonhematopoietic tissues, we further show that ERα signaling in T cells is necessary and sufficient to mediate the inhibitory effect of E2 on EAE development. These data uncover T lymphocytes as a major and nonredundant cellular target responsible for the anti-inflammatory effects of E2 in Th17 cell-driven CNS autoimmunity.