906 resultados para engineering design process
Resumo:
Crystallization is employed in different industrial processes. The method and operation can differ depending on the nature of the substances involved. The aim of this study is to examine the effect of various operating conditions on the crystal properties in a chemical engineering design window with a focus on ultrasound assisted cooling crystallization. Batch to batch variations, minimal manufacturing steps and faster production times are factors which continuous crystallization seeks to resolve. Continuous processes scale-up is considered straightforward compared to batch processes owing to increase of processing time in the specific reactor. In cooling crystallization process, ultrasound can be used to control the crystal properties. Different model compounds were used to define the suitable process parameters for the modular crystallizer using equal operating conditions in each module. A final temperature of 20oC was employed in all experiments while the operating conditions differed. The studied process parameters and configuration of the crystallizer were manipulated to achieve a continuous operation without crystal clogging along the crystallization path. The results from the continuous experiment were compared with the batch crystallization results and analysed using the Malvern Morphologi G3 instrument to determine the crystal morphology and CSD. The modular crystallizer was operated successfully with three different residence times. At optimal process conditions, a longer residence time gives smaller crystals and narrower CSD. Based on the findings, at a constant initial solution concentration, the residence time had clear influence on crystal properties. The equal supersaturation criterion in each module offered better results compared to other cooling profiles. The combination of continuous crystallization and ultrasound has large potential to overcome clogging, obtain reproducible and narrow CSD, specific crystal morphologies and uniform particle sizes, and exclusion of milling stages in comparison to batch processes.
Resumo:
Dissertação de Mestrado para obtenção do grau de Mestre em Design de Produto, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.
Resumo:
The establishment of support platforms for the development of a new culture in design education, in order to achieve both research exploitation and its results, as an approach to the industrial community, challenges higher education institutions to rethink their functioning, divided between investigation on their own initiative or on demand, and its usefulness / practical application. At the same time, through design education, how can they be the engine that aggregates all these frequently antagonistic interests? Polytechnic institutes are predisposed to collaboration and interdisciplinarity. In our course of Technology and Design of Furniture, the availability of a production unit, testing laboratories, and expertise in engineering, design and marketing, encourage the development of a holistic project. In order to develop such knowledge, we adapt three important ways of thinking in designing interactions influenced by the traditional approach, namely, 1) identifying and understanding a design problem, i.e. a market need, 2) defining the design process and knowing what can be used for design education, i.e. opportunities for design education, and 3) sustainability of this framework and design projects' alignment with education in the same field. We explain our approach by arguing from the academicenterprise experiences perspective. This concept is proposed as a way to achieve those three ways of thinking in design education. Then, a set of interaction attributes is defined to explain how engineering and product design education can enhance meaningful relations with manufacturers, stakeholders and society in general. A final discussion is presented with the implications and benefits of this approach. The results suggest that through academic-enterprise partnerships in design, several goals such as students' motivation, product design innovation and potential for knowledge transfer to industries can be achieved.
Resumo:
The aim of this thesis is to use the developments, advantages and applications of "Building Information Modelling" (BIM) with emphasis on the discipline of structural design for steel building located in Perugia. BIM was mainly considered as a new way of planning, constructing and operating buildings or infrastructures. It has been found to offer greater opportunities for increased efficiency, optimization of resources and generally better management throughout the life cycle of a facility. BIM increases the digitalization of processes and offers integrated and collaborative technologies for design, construction and operation. To understand BIM and its benefits, one must consider all phases of a project. Higher initial design costs often lead to lower construction and operation costs. Creating data-rich digital models helps to better predict and coordinate the construction phases and operation of a building. One of the main limitations identified in the implementation of BIM is the lack of knowledge and qualified professionals. Certain disciplines such as structural and mechanical design depend on whether the main contractor, owner, general contractor or architect need to use or apply BIM to their projects. The existence of a supporting or mandatory BIM guideline may then eventually lead to its adoption. To test the potential of the BIM adoption in the steel design process, some models were developed taking advantage of a largely diffuse authoring software (Autodesk Revit), to produce construction drawings and also material schedule that were needed in order to estimate quantities and features of a real steel building. Once the model has been built the whole process has been analyzed and then compared with the traditional design process of steel structure. Many relevant aspect in term of clearness and also in time spent were shown and lead to final conclusions about the benefits from BIM methodology.
Resumo:
Hydrodynamic journal bearings are susceptible to static angular misalignment, resulting from improper assemblage, elastic and thermal distortion of the shaft and bearing housing, and also manufacturing errors. Several previous works on the theme, both theoretical and experimental, focused on the determination of the static properties of angular misaligned bearings. Although some reports show agreement between theoretical and experimental results, the increasingly severe operating conditions of hydrodynamic bearings (heavy loads and high rotational speeds) require more reliable theoretical formulations for the evaluation of the journal performance during the design process. The consideration of the angular misalignment in the derivation of the Reynolds equation is presented here in detail, showing that properly conducted geometric and magnitude-order analyses lead to the inclusion of an axial wedge effect term that influences the velocity and pressure fields in the lubricant film. Numerical results evidence that this axial wedge effect more significantly affects the hydrodynamic forces and static operational properties of tilted short journal bearings.
Resumo:
The ability to control both the minimum size of holes and the minimum size of structural members are essential requirements in the topology optimization design process for manufacturing. This paper addresses both requirements by means of a unified approach involving mesh-independent projection techniques. An inverse projection is developed to control the minimum hole size while a standard direct projection scheme is used to control the minimum length of structural members. In addition, a heuristic scheme combining both contrasting requirements simultaneously is discussed. Two topology optimization implementations are contributed: one in which the projection (either inverse or direct) is used at each iteration; and the other in which a two-phase scheme is explored. In the first phase, the compliance minimization is carried out without any projection until convergence. In the second phase, the chosen projection scheme is applied iteratively until a solution is obtained while satisfying either the minimum member size or minimum hole size. Examples demonstrate the various features of the projection-based techniques presented.
Resumo:
In recent years, the design flows of many dams were re-evaluated, often resulting in discharges larger than the original design. In many cases, the occurrence of the revised flows could result in dam overtopping because of insufficient storage and spillway capacity. An experimental study was conducted herein to gain a better understanding of the flow properties in stepped chutes with slopes typical of embankment dams. The work was based upon a Froude similitude in large-size experimental facilities. A total of 10 configurations were tested including smooth steps, steps equipped with devices to enhance energy dissipation and rough steps. The present results yield a new design procedure. The design method includes some key issues not foreseen in prior studies : e.g., gradually varied flow, type of flow regime, flow resistance. It is believed that the outcomes are valid for a wide range of chute geometry and flow conditions typical of embankment chutes.
Resumo:
Philosophers expend considerable effort on the analysis of concepts, but the value of such work is not widely appreciated. This paper principally analyses some arguments, beliefs, and presuppositions about the nature of design and the relations between design and science common in the literature to illustrate this point, and to contribute to the foundations of design theory.
Resumo:
The discussion about relations between research and design has a number of strands, and presumably motivations. Putting aside the question whether or not design or “creative endeavour” should be counted as research, for reasons to do with institutional recognition or reward, the question remains how, if at all, is design research? This question is unlikely to have attracted much interest but for matters external to Architecture within the modern university. But Architecture as a discipline now needs to understand research much better than in the past when ‘research’ was whatever went on in building science, history or people/environment studies. In this paper, I begin with some common assumptions about design, considered in relation to research, and suggest how the former can constitute or be a mode of the latter. Central to this consideration is an understanding of research as the production of publicly available knowledge. The method is that of conceptual analysis which is much more fruitful than is usually appreciated. This work is part of a larger project in philosophy of design, in roughly the analytical tradition.
Resumo:
Recent efforts in the characterization of air-water flows properties have included some clustering process analysis. A cluster of bubbles is defined as a group of two or more bubbles, with a distinct separation from other bubbles before and after the cluster. The present paper compares the results of clustering processes two hydraulic structures. That is, a large-size dropshaft and a hydraulic jump in a rectangular horizontal channel. The comparison highlighted some significant differences in clustering production and structures. Both dropshaft and hydraulic jump flows are complex turbulent shear flows, and some clustering index may provide some measure of the bubble-turbulence interactions and associated energy dissipation.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
The vacancy solution theory of adsorption is re-formulated here through the mass-action law, and placed in a convenient framework permitting the development of thermodynamic ally consistent isotherms. It is shown that both the multisite Langmuir model and the classical vacancy solution theory expression are special cases of the more general approach when the Flory-Huggins activity coefficient model is used, with the former being the thermodynamically consistent result. The improved vacancy solution theory approach is further extended here to heterogeneous adsorbents by considering the pore-width dependent potential along with a pore size distribution. However, application of the model to numerous hydrocarbons as well as other adsorptives on microporous activated carbons shows that the multisite model has difficulty in the presence of a pore size distribution, because pores of different sizes can have different numbers of adsorbed layers and therefore different site occupancies. On the other hand, use of the classical vacancy solution theory expression for the local isotherm leads to good simultaneous fit of the data, while yielding a site diameter of about 0.257 nm, consistent with that expected for the potential well in aromatic rings on carbon pore surfaces. It is argued that the classical approach is successful because the Flory-Huggins term effectively represents adsorbate interactions in disguise. When used together with the ideal adsorbed solution theory the heterogeneous vacancy solution theory successfully predicts binary adsorption equilibria, and is found to perform better than the multisite Langmuir as well as the heterogeneous Langmuir model. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The mechanism underlying segregation in liquid fluidized beds is investigated in this paper, A binary fluidized bed system not at a stable equilibrium condition. is modelled in the literature as forming a mixed part-corresponding to stable mixture-at the bottom of the bed and a pure layer of excess components always floating on the mixed part. On the basis of this model: (0 comprehensive criteria for binary particles of any type to mix/segregate, and (ii) mixing, segregation regime map in terms of size ratio and density ratio of the particles for a given fluidizing medium, are established in this work. Therefore, knowing the properties of given particles, a second type of particles can be chosen in order to avoid or to promote segregation according to the particular process requirements. The model is then advanced for multicomponent fluidized beds and validated against experimental results observed for ternary fluidized beds. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
BP Refinery (Bulwer Island) Ltd (BP) located on the eastern Australian coast is currently undergoing a major expansion as a part of the Queensland Clean Fuels Project. The associated wastewater treatment plant upgrade will provide a better quality of treated effluent than is currently possible with the existing infrastructure, and which will be of a sufficiently high standard to meet not only the requirements of imposed environmental legislation but also BP's environmental objectives. A number of challenges were faced when considering the upgrade, particularly; cost constraints and limited plot space, highly variable wastewater, toxicity issues, and limited available hydraulic head. Sequencing Batch Reactor (SBR) Technology was chosen for the lagoon upgrade based on the following; SBR technology allowed a retro-fit of the existing earthen lagoon without the need for any additional substantial concrete structures, a dual lagoon system allowed partial treatment of wastewaters during construction, SBRs give substantial process flexibility, SBRs have the ability to easily modify process parameters without any physical modifications, and significant cost benefits. This paper presents the background to this application, an outline of laboratory studies carried out on the wastewater and details the full scale design issues and methods for providing a cost effective, efficient treatment system using the existing lagoon system.