924 resultados para energy fluence rate
Resumo:
Objectives The methods currently available for the measurement of energy expenditure in patients, such as indirect calorimetry and double-labelled water, are expensive and are limited in Brazil to research projects. Thus, equations for the prediction of resting metabolic rate appear to be a viable alternative for clinical practice. However, there are no specific equations for the Brazilian population and few studies have been conducted on Brazilian women in the climacteric period using existing and commonly applied equations. On this basis, the objective of the present study was to investigate the concordance between the predictive equations most frequently used and indirect calorimetry for the measurement of resting metabolic rate. Methods We calculated the St. Laurent concordance correlation coefficient between the equations and resting metabolic rate calculated by indirect calorimetry in 46 climacteric women. Results The equation showing the best concordance was that of the FAO/WHO/UNU formula (0.63), which proved to be better than the Harris & Benedict equation (0.55) for the sample studied. Conclusions On the basis of the results of the present study, we conclude that the FAO/WHO/UNU formula can be used to predict better the resting metabolic rate of climacteric women. Further studies using more homogeneous and larger samples are needed to permit the use of the FAO/WHO/UNU formula for this population group with greater accuracy.
Resumo:
Studies on children with cancer have suggested that energy expenditure may indeed be greater than predicted for healthy children. Nutritional assessment is important for intervention and for the prevention of complications associated with malnutrition. The present study aimed to describe the nutritional status, energy expenditure, and substrate utilization of children and adolescents with cancer compared to healthy children matched for age, sex, and body mass index. Subjects were evaluated by anthropometry, food intake pattern, and body composition analysis. Energy expenditure and substrate oxidation were measured by indirect calorimetry. Indirect calorimetry data, energy, and macronutrient intake, anthropometry, and body composition parameters showed no significant differences between groups. There was no evidence of increased energy expenditure or of a change in substrate utilization in children with cancer compared to the healthy group. The data regarding usual food consumption showed no significant differences between groups.
Resumo:
Background: The major stress response to critical illness leads to a catabolic state and loss of lean body mass. Aims: To test whether an increased rate of creatinine excretion might provide unique and timely information to monitor cell catabolism; to relate this information to balances of cell constituents (nitrogen, potassium, phosphate and magnesium); to evaluate the effectiveness of nutritional therapy to reverse this catabolic process. Design: Prospective observational study. Methods: Children with severe traumatic brain injury admitted to the paediatric critical care units of The Hospital for Sick Children, Toronto, Canada and Hospital das Clnicas, Faculty of Medicine of Ribeiro Preto, University of So Paulo, Brazil were studied. Complete 24 h urine collections were obtained for measurement of creatinine excretion rate and daily balances of nitrogen, potassium, phosphate and magnesium. Results: Seventeen patients were studied for 310 days. On Day 1, all had negative balances for protein and phosphate. Balances for these intracellular constituents became positive when protein intake was >= 1 g/kg/day and energy intake was >= 50% of estimated energy expenditure (P < 0.0001). Creatinine excretion rate was positively correlated with the urea appearance rate (r = 0.60; P < 0.0001), and negatively with protein balance (r = -0.45; P < 0.0001). Sepsis developed in four patients; before its clinical detection, there were negative balances for all intracellular markers and an abrupt rise in the excretion of creatinine. Conclusions: Negative balances of intracellular components and an increase in rate of creatinine excretion heralded the onset of catabolism.
Resumo:
The aim of this study was to investigate whether distinct cooling of low fluence erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation would influence adhesion. Main factors tested were: substrates (two), irradiation conditions (three), and adhesives (three). A 750 mu m diameter tip was used, for 50 s, 1 mm from the surface, with a 0.25 W power output, 20 Hz, energy density of 2.8 J/cm(2) with energy per pulse of 12.5 mJ. When applied, water delivery rate was 11 ml/min. The analysis of variance (ANOVA) showed that laser conditioning significantly decreased the bond strength of all adhesive systems applied on enamel. On dentin, laser conditioning significantly reduced bond strength of etch-and-rinse and one-step self-etch systems; however, laser irradiation under water cooling did not alter bonding of two-step self-etching. It may be concluded that the irradiation with Er,Cr:YSGG laser at 2.8 J/cm(2) with water coolant was responsible for a better adhesion to dentin, while enamel irradiation reduced bond strength, irrespective of cooling conditions.
Resumo:
Purpose: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. Methods: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared spectroscopy (FTIR). Wear was assessed by a three-body test. Data were submitted to Levene`s test, one and three-way ANOVA, and Tukey HSD test (alpha= 0.05). Results: Immersion in ethanol, curing mode, and material all had significant effects on Wallace hardness. After ethanol storage, resin composites exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (P< 0.0001). Tetric Ceram was the softest material followed by Esthet-X and Filtek Z250 (P< 0.001). Only the restorative material had a significant effect on degree of conversion (P< 0.001): Esthet-X had the lowest degree of conversion followed by Filtek Z250 and Tetric Ceram. Curing mode (P= 0.007) and material (P< 0.001) had significant effect on wear. Higher wear resulted from the pulse-delay curing mode when compared to continuous curing, and Filtek Z250 showed the lowest wear followed by Esthet-X and Tetric Ceram. (Am J Dent 2011;24:115-118).
Resumo:
Eggs from the Heron Island, Great Barrier Reef, nesting population of green turtles (Chelonia mydas) were incubated at all-male-determining (26 degreesC) and all-female-determining (30 degreesC) temperatures. Oxygen consumption and embryonic growth were monitored throughout incubation, and hatchling masses and body dimensions were measured from both temperatures. Eggs hatched after 79 and 53 days incubation at 26 degreesC and 30 degreesC respectively. Oxygen consumption at both temperatures increased to a peak several days before hatching, a pattern typical of turtle embryos, and the rate of oxygen was higher at 30 degreesC than 26 degreesC. The total amount of energy consumed during incubation, and hatchling dimensions, were similar at both temperatures, but hatchlings from 26 degreesC had larger mass, larger yolk-free mass and smaller residual yolks than hatchlings from 30 degreesC. Because of the difference in mass of hatchlings, hatchlings from 30 degreesC had a higher production cost.
Resumo:
Objective: The purpose of this study was to compare the energy cost of standardized physical activity (ECA) between patients with cystic fibrosis (CF) and healthy control subjects. Design: Cross-sectional study using patients with CF and volunteers from the community. Setting: University laboratory. Subjects: Fifteen patients (age 24.6 +/- 4.6 y) recruited with consent from their treating physician and 16 healthy control subjects (age 25.3 +/- 3.2) recruited via local advertisement. Interventions. Patients and controls walked on a computerised treadmill at 1.5 km/h for 60 min followed by a 60 min recovery period and, on a second occasion, cycled at 0.5 kp (kilopond), 30 rpm followed by a 60 min recovery. The ECA was measured via indirect calorimetry. Resting energy expenditure (REE), nutritional status, pulmonary function and genotype were determined. Results: The REE in patients was significantly greater than the REE measured in controls (P = 0.03) and was not related to the severity of lung disease or genotype. There was a significant difference between groups when comparing the ECA for walking kg root FFM (P = 0.001) and cycling kg root FFM (P = 0.04). The ECA for each activity was adjusted (ECA(adj)) for the contribution of REE (ECA kJ kg root FFM 120 min(-1) - REE kJ kg root FFM 120 min(-1)). ECA(adj) revealed a significant difference between groups for the walking protocol (P = 0.001) but no difference for the cycling protocol (P = 0.45). This finding may be related to the fact that the work rate during walking was more highly regulated than during cycling. Conclusions ECA in CF is increased and is likely to be explained by an additional energy-requiring component related to the exercise itself and not an increased REE. Sponsorship. The Prince Charles Hospital Foundation; MLR was in receipt of a QUTPRA Scholarship.
Resumo:
Objective: To compare measurements of sleeping metabolic rate (SMR) in infancy with predicted basal metabolic rate (BMR) estimated by the equations of Schofield. Methods: Some 104 serial measurements of SMR by indirect calorimetry were performed in 43 healthy infants at 1.5, 3, 6, 9 and 12 months of age. Predicted BMR was calculated using the weight only (BMR-wo) and weight and height (BMR-wh) equations of Schofield for 0-3-y-olds. Measured SMR values were compared with both predictive values by means of the Bland-Altman statistical test. Results: The mean measured SMR was 1.48 MJ/day. The mean predicted BMR values were 1.66 and 1.47 MJ/day for the weight only and weight and height equations, respectively. The Bland-Altman analysis showed that BMR-wo equation on average overestimated SMR by 0.18 MJ/day (11%) and the BMR-wh equation underestimated SMR by 0.01 MJ/day (1%). However the 95% limits of agreement were wide: - 0.64 to - 0.28MJ/day (28%) for the former equation and - 0.39 to +0.41 MJ/day (27%) for the latter equation. Moreover there was a significant correlation between the mean of the measured and predicted metabolic rate and the difference between them. Conclusions: The wide variation seen in the difference between measured and predicted metabolic rate and the bias probably with age indicates there is a need to measure actual metabolic rate for individual clinical care in this age group.
Resumo:
Purpose: The aim of this study was to assess the accuracy of a (CO2)-C-13 breath test for the prediction of short-duration energy expenditure. Methods: Eight healthy volunteers walked at 1.5 km.h(-1) for 60 min followed by 60-min recovery. During this time, the energy cost of physical activity was measured via respiratory calorimetry and a C-13 bicarbonate breath test. A further eight subjects were tested using the same two methods during a 60-min cycle at 0.5 kp. 30 ipm followed by a 60-min recovery. The rate of appearance of (CO2)-C-13, (RaCO2) was measured and the mean ratio, (V) over dot CO2/RaCO2 was used to calculate energy expenditure using the isotopic approach. Results: As would be expected, there was a significant difference in the energy cost of walking and cycling using both methods (P < 0.05). However. no significant differences were observed between respiratory calorimetry and the isotope method for measurement of energy expenditure while walking or cycling. Conclusions: These data suggest that the C-13 breath test is a valid method that can be used to measure the energy cost of short duration physical activity in a field setting.
Resumo:
Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.
Resumo:
Within the skeletal muscle cell at the onset of muscular contraction, phosphocreatine (PCr) represents the most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As a result, its concentration can be reduced to less than 30% of resting levels during intense exercise. As a fall in the level of PCr appears to adversely affect muscle contraction, and therefore power output in a subsequent bout, maximising the rate of PCr resynthesis during a brief recovery period will be of benefit to an athlete involved in activities which demand intermittent exercise. Although this resynthesis process simply involves the rephosphorylation of creatine by aerobically produced ATP (with the release of protons), it has both a fast and slow component, each proceeding at a rate that is controlled by different components of the creatine kinase equilibrium. The initial fast phase appears to proceed at a rate independent of muscle pH. Instead, its rate appears to be controlled by adenosine diphosphate (ADP) levels; either directly through its free cytosolic concentration, or indirectly, through its effect on the free energy of ATP hydrolysis. Once this fast phase of recovery is complete, there is a secondary slower phase that appears almost certainly rate-dependant on the return of the muscle cell to homeostatic intracellular pH. Given the importance of oxidative phosphorylation in this resynthesis process, those individuals with an elevated aerobic power should be able to resynthesise PCr at a more rapid rate than their sedentary counterparts. However, results from studies that have used phosphorus nuclear magnetic resonance (P-31-NMR) spectroscopy, have been somewhat inconsistent with respect to the relationship between aerobic power and PCr recovery following intense exercise. Because of the methodological constraints that appear to have limited a number of these studies, further research in this area is warranted.
Resumo:
The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23degreesC and (3) heated via convective transfer by increasing water temperature from 23degreesC to 35degreesC. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23degreesC. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (
Resumo:
This study aimed to develop a practical method of estimating energy expenditure (EE) during tennis. Twenty-four elite female tennis players first completed a tennis-specific graded test in which five different intensity levels were applied randomly. Each intensity level was intended to simulate a game of singles tennis and comprised six 14 s periods of activity alternated with 20 s of active rest. Oxygen consumption (VO2) and heart rate (HR) were measured continuously and each player's rate of perceived exertion (RPE) was recorded at the end of each intensity level. Rate of energy expenditure (EEVO2) during the test was calculated using the sum of VO2 during play and the 'O-2 debt' during recovery, divided by the duration of the activity. There were significant individual linear relationships between EEVO2 and RPE, EEVO2 and HR, (rgreater than or equal to0.89 rgreater than or equal to0.93; p
Resumo:
A bituminous coal was pyrolyzed in a nitrogen stream in an entrained flow reactor at various temperatures from 700 to 1475 degreesC. Char samples were collected at different positions along the reactor. Each collected sample was oxidized nonisothermally in a TGA for reactivity determination. The reactivity of the coal char was found to decrease rapidly with residence time until 0.5 s, after which it decreased only slightly. On the bases of the reactivity data at various temperatures, a new approach was utilized to obtaining the true activation energy distribution function for thermal annealing without the assumption of any distribution function form or a constant preexponential factor. It appears that the true activation energy distribution function consists of two separate parts corresponding to different temperature ranges, suggesting different mechanisms in different temperature ranges. Partially burnt coal chars were also collected along the reactor when the coal was oxidized in air at various temperatures from 700 to 1475 degreesC. The collected samples were analyzed for the residual carbon content and the specific reaction rate was estimated. The characteristic time of thermal deactivation was compared with that of oxidation under realistic conditions. The characteristic times were found to be close to each other, indicating the importance of thermal deactivation during combustion of the coal studied.
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks (LR-WPAN) including wireless sensor networks (WSNs). It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When in beaconenabled mode, the protocol can provide timeliness guarantees by using its Guaranteed Time Slot (GTS) mechanism. However, power-efficiency and timeliness guarantees are often two antagonistic requirements in wireless sensor networks. The purpose of this paper is to analyze and propose a methodology for setting the relevant parameters of IEEE 802.15.4-compliant WSNs that takes into account a proper trade-off between power-efficiency and delay bound guarantees. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters, using Network Calculus formalism. We then evaluate the delay bound guaranteed by a GTS allocation and express it as a function of the duty cycle. Based on the relation between the delay requirement and the duty cycle, we propose a power-efficient superframe selection method that simultaneously reduces power consumption and enables meeting the delay requirements of real-time flows allocating GTSs. The results of this work may pave the way for a powerefficient management of the GTS mechanism in an IEEE 802.15.4 cluster.