940 resultados para energy auto-correlation function
Resumo:
The effect of correlations on the viscosity of a dilute sheared inelastic fluid is analyzed using the ring-kinetic equation for the two-particle correlation function. The leading-order contribution to the stress in an expansion in epsilon=(1-e)(1/2) is calculated, and it is shown that the leading-order viscosity is identical to that obtained from the Green-Kubo formula, provided the stress autocorrelation function in a sheared steady state is used in the Green-Kubo formula. A systemmatic extension of this to higher orders is also formulated, and the higher-order contributions to the stress from the ring-kinetic equation are determined in terms of the terms in the Chapman-Enskog solution for the Boltzmann equation. The series is resummed analytically to obtain a renormalized stress equation. The most dominant contributions to the two-particle correlation function are products of the eigenvectors of the conserved hydrodynamic modes of the two correlated particles. In Part I, it was shown that the long-time tails of the velocity autocorrelation function are not present in a sheared fluid. Using those results, we show that correlations do not cause a divergence in the transport coefficients; the viscosity is not divergent in two dimensions, and the Burnett coefficients are not divergent in three dimensions. The equations for three-particle and higher correlations are analyzed diagrammatically. It is found that the contributions due to the three-particle and higher correlation functions to the renormalized viscosity are smaller than those due to the two-particle distribution function in the limit epsilon -> 0. This implies that the most dominant correlation effects are due to the two-particle correlations.
Resumo:
Here we find through computer simulations and theoretical analysis that the low temperature thermodynamic anomalies of liquid water arises from the intermittent fluctuation between its high density and low density forms, consisting largely of 5-coordinated and 4-coordinated water molecules, respectively. The fluctuations exhibit strong dynamic heterogeneity (defined by the four point time correlation function), accompanied by a divergence like growth of the dynamic correlation length, of the type encountered in fragile supercooled liquids. The intermittency has been explained by invoking a two state model often employed to understand stochastic resonance, with the relevant periodic perturbation provided here by the fluctuation of the total volume of the system.
Resumo:
A detailed study of the solvation dynamics of a charged coumarin dye molecule in gamma-cyclodextrin/water has been carried out by using two different theoretical approaches. The first approach is based on a multishell continuum model (MSCM). This model predicts the time scales of the dynamics rather well, provided an accurate description of the frequency-dependent dielectric function is supplied. The reason for this rather surprising agreement is 2-fold. First, there is a cancellation of errors, second, the two-zone model mimics the heterogeneous microenvironment surrounding the ion rather well. The second approach is based on the molecular hydrodynamics theory (MI-IT). In this molecular approach, the solvation dynamics has been studied by restricting the translational motion of the solvent molecules enclosed within the cavity. The results from the molecular theory are also in good agreement with the experimental results. Our study indicates that, in the present case, the restricted environment affects only the long time decay of the solvation time correlation function. The short time dynamics is still governed by the librational (and/or vibrational) modes present in bulk water.
Resumo:
We study by means of experiments and Monte Carlo simulations, the scattering of light in random media, to determine the distance up to which photons travel along almost undeviated paths within a scattering medium, and are therefore capable of casting a shadow of an opaque inclusion embedded within the medium. Such photons are isolated by polarisation discrimination wherein the plane of linear polarisation of the input light is continuously rotated and the polarisation preserving component of the emerging light is extracted by means of a Fourier transform. This technique is a software implementation of lock-in detection. We find that images may be recovered to a depth far in excess of that predicted by the diffusion theory of photon propagation. To understand our experimental results, we perform Monte Carlo simulations to model the random walk behaviour of the multiply scattered photons. We present a. new definition of a diffusing photon in terms of the memory of its initial direction of propagation, which we then quantify in terms of an angular correlation function. This redefinition yields the penetration depth of the polarisation preserving photons. Based on these results, we have formulated a model to understand shadow formation in a turbid medium, the predictions of which are in good agreement with our experimental results.
Resumo:
Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.
Resumo:
With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincaré group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not restricted only to the Ohmic bath, rather it is more general, for a non-Ohmic bath. We also derive expressions of the average work done and the variance of the work done in terms of the two-time correlation function of the fluctuations of the position of the harmonic oscillator. In the case of an Ohmic bath, we use these relations to evaluate the average work done and the variance of the work done analytically and verify the transient state work fluctuation theorem quantitatively. Actually these relations have far-reaching consequences. They can be used to numerically evaluate the average work done and the variance of the work done in the case of a non-Ohmic bath when analytical evaluation is not possible.
Resumo:
The Wilson coefficient corresponding to the gluon-field strength GμνGμν is evaluated for the nucleon current correlation function in the presence of a static external electromagnetic field, using a regulator mass Λ to separate the high-momentum part of the Feynman diagrams. The magnetic-moment sum rules are analyzed by two different methods and the sensitivity of the results to variations in Λ are discussed.
Resumo:
Monte Carlo simulations with realistic interaction potentials have been carried out on isopentane to investigate the glass transition. Intermolecular pair-correlation functions of the glass show distinct differences from those of the liquid, the CH-CH pair-correlation function being uniquely different from the other pair-correlation functions. The coordination number of the glass is higher than that of the liquid, and the packing in the glass seems to be mainly governed by the geometrical constraints of the molecule. Annealing affects the properties of the glass significantly.
Resumo:
The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and each other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.
Resumo:
Recent work of Jones et al. giving the long-range behaviour of the pair correlation function is used to confirm that the critical ratio Pc/nckBTc = 1/2 in the Born-Green theory. This deviates from experimental results on simple insulating liquids by more than the predictions of the van der Waals equation of state. A brief discussion of conditions for thermodynamic consistency, which the Born-Green theory violates, is then given. Finally, the approach of the Ornstein-Zernike correlation function to its critical point behaviour is discussed within the Born-Green theory.
Resumo:
A digital correlator has been built which calculates the full correlation function of a statistically stationary random signal.
Resumo:
A general expression for the Mössbauer lineshape in the presence of a radio frequency field is derived. As an example the effect of the rf field on Fe57 nuclei is discussed for a situation where the 3/2 sublevel of 14.4 keV state of Fe57 is selectively populated. At resonance, both the diagonal and non-diagonal matrix elements contribute to the correlation function. As a result, in addition to a slight rf induced distortion of the main Mössbauer line. additional transition lines are obtained. Thus the present calculation supports the experimental observations of Heiman et al.