972 resultados para energy, harvesting, flyback, piezoelettrico
Resumo:
Nel presente elaborato è trattato l'innesco di un sistema di recupero ambientale di energia da sorgenti a radiofrequenza, captate tramite rectenna, nell'ambito di un sistema completamente autonomo dal punto di vista energetico, quindi non dotato di batteria ricaricabile interna. Dopo un'analisi dei problemi da affrontare e delle possibili soluzioni tecniche per gestire le micropotenze restituite dalla rectenna, ci si concentra in modo preferenziale sul ruolo del condensatore posto sulla porta d'ingresso dell'oscillatore di Meissner, che è utilizzato come elevatore di tensione per attivare gli stadi successivi. Sfruttando le esperienze con lo stesso oscillatore pilotato da altri sensori di energy harvesting, è possibile determinare approssimativamente se il circuito si presta o meno all'utilizzo con le rectenne nei campi RF, suggerendo eventuali migliorie da apportare per facilitarne il funzionamento.
Resumo:
L'energy harvesting è un processo in cui l'energia ambientale comunemente disponibile viene catturata mediante opportuni trasduttori e circuiti elettronici per essere convertita in energia elettrica utilizzabile. Il progetto descritto sarà una estensione ed integrazione di un sistema già esistente, per la riproduzione attraverso un sistema elettrodinamico vibrante (shaker), di vibrazioni acquisite dall'ambiente circostante in situazioni di riferimento tipiche (esempio le vibrazioni prodotte da un veicolo in movimento o un uomo in corsa), al fine di caratterizzare trasduttori piezoelettrici per studiarne il funzionamento, le caratteristiche e il loro comportamento. Lo scopo finale è quello di realizzare un sistema stand-alone che sia in grado di riprodurre e controllare in maniera affidabile le vibrazioni imposte da un sistema vibrante, al fine di realizzare un sistema di caratterizzazione per dispositivi di energy harvesting vibrazionale. In questo progetto, l’intera gestione del processo viene affidata ad un microcontrollore presente sulla scheda di controllo, il quale consente in tempo reale la visualizzazione delle forme d’onda oggetto di studio mediante un display grafico, l’elaborazione dei dati presenti nel sistema nonché la possibilità di caricare e salvare dei dati significativi sulla memoria del sistema durante le fasi di testing. Le caratteristiche implementate rendono il sistema facile da usare. Successivamente verranno descritte le specifiche tecniche necessariamente da rispettare per la realizzazione di un sistema che permetta di riprodurre e fornire dati attendibili, la struttura di visualizzazione grafica del sistema, la parte di condizionamento del segnale e i principi teorici del controllo ad anello chiuso.
Resumo:
Questo lavoro si è occupato della ricerca e progettazione di un'antenna UWB per la realizzazione di un tag RFID e si colloca all'interno del progetto GRETA (GREen TAgs), finanziato dal MIUR. Le principali caratteristiche richieste al green tag sono: dimensioni complessive di massimo 4-5 cm, assenza di batterie e compatibilità con l'ambiente. L'eco-compatibilità viene garantita tramite la realizzazione dell'antenna al di sopra di un substrato di carta; i limiti derivanti dall'assenza di batterie vengono invece sopperiti tramite realizzazione di energy harvesting, al fine di raggiungere una completa autonomia energetica. Viene sfruttata la tecnica UWB per la comunicazione nella banda (3.1-4.8 GHz); l'energy harvesting si effettua invece a 868 MHz. Sono infine stati ricavati alcuni primi risultati relativi alla potenza rettificabile con la soluzione proposta, tramite realizzazione di un opportuno circuito rettificatore.
Resumo:
L'elaborato di tesi tratta la caratterizzazione del rendimento di un circuito convertitore di energia elettrica in energia meccanica. La conversione viene svolta con una procedura più complessa, ma più efficiente rispetto alla conversione classica. Il circuito studiato è soggetto alle problematiche legate all'energy harvesting, tuttavia ha il vantaggio di non necessitare di alimentazione esterna.
Resumo:
The present PhD thesis exploits the design skills I have been improving since my master thesis’ research. A brief description of the chapters’ content follows. Chapter 1: the simulation of a complete front–end is a very complex problem and, in particular, is the basis upon which the prediction of the overall performance of the system is possible. By means of a commercial EM simulation tool and a rigorous nonlinear/EM circuit co–simulation based on the Reciprocity Theorem, the above–mentioned prediction can be achieved and exploited for wireless links characterization. This will represent the theoretical basics of the entire present thesis and will be supported by two RF applications. Chapter 2: an extensive dissertation about Magneto–Dielectric (MD) materials will be presented, together with their peculiar characteristics as substrates for antenna miniaturization purposes. A designed and tested device for RF on–body applications will be described in detail. Finally, future research will be discussed. Chapter 3: this chapter will deal with the issue regarding the exploitation of renewable energy sources for low–energy consumption devices. Hence the problem related to the so–called energy harvesting will be tackled and a first attempt to deploy THz solar energy in an innovative way will be presented and discussed. Future research will be proposed as well. Chapter 4: graphene is a very promising material for devices to be exploited in the RF and THz frequency range for a wide range of engineering applications, including those ones marked as the main research goal of the present thesis. This chapter will present the results obtained during my research period at the National Institute for Research and Development in Microtechnologies (IMT) in Bucharest, Romania. It will concern the design and manufacturing of antennas and diodes made in graphene–based technology for detection/rectification purposes.
Resumo:
Wireless Sensor Networks (WSNs) offer a new solution for distributed monitoring, processing and communication. First of all, the stringent energy constraints to which sensing nodes are typically subjected. WSNs are often battery powered and placed where it is not possible to recharge or replace batteries. Energy can be harvested from the external environment but it is a limited resource that must be used efficiently. Energy efficiency is a key requirement for a credible WSNs design. From the power source's perspective, aggressive energy management techniques remain the most effective way to prolong the lifetime of a WSN. A new adaptive algorithm will be presented, which minimizes the consumption of wireless sensor nodes in sleep mode, when the power source has to be regulated using DC-DC converters. Another important aspect addressed is the time synchronisation in WSNs. WSNs are used for real-world applications where physical time plays an important role. An innovative low-overhead synchronisation approach will be presented, based on a Temperature Compensation Algorithm (TCA). The last aspect addressed is related to self-powered WSNs with Energy Harvesting (EH) solutions. Wireless sensor nodes with EH require some form of energy storage, which enables systems to continue operating during periods of insufficient environmental energy. However, the size of the energy storage strongly restricts the use of WSNs with EH in real-world applications. A new approach will be presented, which enables computation to be sustained during intermittent power supply. The discussed approaches will be used for real-world WSN applications. The first presented scenario is related to the experience gathered during an European Project (3ENCULT Project), regarding the design and implementation of an innovative network for monitoring heritage buildings. The second scenario is related to the experience with Telecom Italia, regarding the design of smart energy meters for monitoring the usage of household's appliances.
Resumo:
In questo elaborato si riporta la caratterizzazione energetica di un sistema a microcontrollore basato su tecnologia FRAM. Sono state analizzate le innovazioni e i vantaggi portati dall'introduzione della memoria FRAM, le migliori configurazioni di funzionamento del microcontrollore studiato al fine di raggiungere consumi energetici di sistema il più basso possibile.
Resumo:
Progettazione di un sistema di misura contactless per la tensione, da integrare in un nodo sensore di una Wireless Sensor Network per Smart Metering Distribuito
Resumo:
Il presente lavoro di Tesi è stato incentrato sul dimensionamento di un sistema wireless epidermico abile a monitorare parametri fisiologici. La fase iniziale del lavoro è stata spesa per indagare le varie tipologie di sorgenti utili ad effettuare Energy Harvesting in contesti applicativi biomedicali, ed analizzare lo stato dell’arte in merito ai sistemi miniaturizzati, passivi, interfacciabili alla superficie corporea, configurabili nel settore di ricerca e-skin. Il corpo centrale del lavoro è stato quello di dimensionare un nuovo sistema wireless epidermico, energeticamente autonomo. Tale sistema è stato strutturato in tre catene costitutive. La prima di queste definita di Energy Harvesting e storage, presenta una cella solare, un boost converter –charger per il management della potenza ed una thin film battery come elemento di storage. La seconda catena è configurabile come quella di ricezione, in cui l’elemento cruciale è una Wake-Up Radio (WUR), la cui funzione è quella di abilitare il sistema di misura costituito da Microcontroller e sensore solo quando un Reader comunicherà la corretta sequenza di bit abilitanti alla lettura. La presente scelta ha mostrato vantaggi in termini di ridotti consumi. La terza ed ultima catena del sistema per mezzo di Microcontrollore e Transceiver consentirà di trasmettere via RF il dato letto al Reader. Una interfaccia grafica utente implementata in Matlab è stata ideata per la gestione dei dati. La sezione ultima della Tesi è stata impostata analizzando i possibili sviluppi futuri da seguire, in particolare integrare il sistema completo utilizzando un substrato flessibile così come il Kapton e dotare il sistema di sensoristica per misure biomediche specialistiche per esempio la misura del SpO2.
Resumo:
The integration of novel nanomaterials with highly-functional biological molecules has advanced multiple fields including electronics, sensing, imaging, and energy harvesting. This work focuses on the creation of a new type of bio-nano hybrid substrate for military biosensing applications. Specifically it is shown that the nano-scale interactions of the optical protein bacteriorhodopsin and colloidal semiconductor quantum dots can be utilized as a generic sensing substrate. This work spans from the basic creation of the protein to its application in a novel biosensing system. The functionality of this sensor design originates from the unique interactions between the quantum dot and bacteriorhodopsin molecule when in nanoscale proximity. A direct energy transfer relationship has been established between coreshell quantum dots and the optical protein bacteriorhodopsin that substantially enhances the protein’s native photovoltaic capabilities. This energy transfer phenomena is largely distance dependent, in the sub-10nm realm, and is characterized experimentally at multiple separation distances. Experimental results on the energy transfer efficiency in this hybrid system correlate closely to theoretical predictions. Deposition of the hybrid system with nano-scale control has allowed for the utilization of this energy transfer phenomena as a modulation point for a functional biosensor prototype. This work reveals that quantum dots have the ability to activate the bacteriorhodopsin photocycle through both photonic and non-photonic energy transfer mechanisms. By altering the energy transferred to the bacteriorhodopsin molecule from the quantum dot, the electrical output of the protein can be modulated. A biosensing prototype was created in which the energy transfer relationship is altered upon target binding, demonstrating the applicability of a quantum dot/bacteriorhodopsin hybrid system for sensor applications. The electrical nature of this sensing substrate will allow for its efficient integration into a nanoelectronics array form, potentially leading to a small-low power sensing platform for remote toxin detection applications.
Resumo:
Das autonome, intelligente Ladehilfsmittel verkörpert die Idee des Internets der Dinge in der Intralogistik in Reinform. Am Beispiel des inBin wird das Energy-Harvesting in der Intralogistik betrachtet und gezeigt, dass ein Behälter mit komplexen logistischen Funktionen unter realistischer Umgebungsbeleuchtung durch Solarzellen betrieben werden kann.
Resumo:
Im Rahmen dieses Artikels werden aktuelle Forschungsarbeiten zum Einsatz von Energy-Harvesting und Ultra-Low-Power-Geräten in Materialflusssystemen beschrieben. Ein besonderes Augenmerk wird auf die inBin-Plattform, das Energy-Harvesting und deren Auswirkungen auf die Leistungsverfügbarkeit gelegt. Dazu werden die Hardwareplattform und Architektur der inBin-Plattform sowie der Aufbau eines Versuchsfelds detailliert erläutert. Des Weiteren wird ein Ansatz zur Modellierung und Simulation von Systemen mit einer großen Anzahl von inBin-Plattformen vorgestellt. Darüber hinaus werden die Ergebnisse zweier simulierter Szenarien und mögliche Folgen für die Planung zukünftiger Materialflusssysteme betrachtet.
Resumo:
Cardiac pacemakers are routinely used for the treatment of bradyarrhythmias. Contemporary pacemakers are reliable and allow for a patient specific programming. However, pacemaker replacements due to battery depletion are common (~25 % of all implantation procedures) and bear the risk of complications. Batteryless pacemakers may allow overcoming this limitation. To power a batteryless pacemaker, a mechanism for intracorporeal energy harvesting is required. Such a generator may consist out of subcutaneously implanted solar cells, transforming the small amount of transcutaneously available light into electrical energy. Alternatively, intravascular turbines may harvest energy from the blood flow. Energy may also be harvested from the ventricular wall motion by a dedicated mechanical clockwork converting motion into electrical energy. All these approaches have successfully been tested in vivo. Pacemaker leads constitute another Achilles heel of contemporary pacemakers. Thus, leadless devices are desired. Miniaturized pacemaker circuits and suitable energy harvesting mechanisms (incorporated in a single device) may allow catheter-based implantation of the pacemaker in the heart. Such miniaturized battery- and leadless pacemakers would combine the advantages of both approaches and overcome major limitations of today’s systems.
Resumo:
Este proyecto continua con el estudio iniciado en los proyectos: Alimentación “Energy Harvesting” basada en fuentes piezoeléctricas, Alimentación autónoma: aplicación a fuente piezoeléctrica y Banco de pruebas para sistemas autoalimentados en aplicaciones viales, que se realizaron anteriormente. Este estudio se basa en la búsqueda de soluciones de alimentación Energy Harvesting centrados en fuentes piezoeléctricas. El objetivo de este estudio es conocer las posibilidades que pueden ofrecer los materiales piezoeléctricos para alimentación autónoma cuando son excitados por vehículos en diferentes circunstancias y entornos viales. Para la realización de este estudio se han utilizado señales provenientes del banco de ensayos, así como señales obtenidas de una instalación construida en un vial del Campus. Para poder realizar el estudio de los diversos materiales piezoeléctricos utilizados en este proyecto, se necesitan conocer las características de los modelos eléctricos. Para obtener estas características se ha diseñado un programa basado en LabView, este programa además puede modificar la señal para que simule las diversas circunstancias a las que pueden estar sometidos los diferentes materiales piezoeléctricos. En este estudio se ha tenido en cuenta la distancia de seguridad entre vehículos para diferentes velocidades y la posibilidad de poder amplificar la excitación que pueden recibir los diversos materiales. Utilizando el programa PSpice OrCAD® se realizan los diferentes modelos con el objetivo de observar el comportamiento de los materiales bajo diversas circunstancias. También se han utilizado varias topologías rectificadoras diferentes para poder comprobar en que situación se puede obtener la máxima tensión acumulada posible. Además también se ha evaluado la máxima potencia que puede entregar cada material en cada situación. Por ultimo se han realizado varias pruebas prácticas con el banco de ensayos para comprobar la acumulación energética real que se puede obtener de los materiales instalados en él. También se ha realizado el estudio de una aplicación práctica que sea capaz de alimentar pequeños circuitos o sensores de poco consumo. Abstract This Project goes on with the study started in the projects Feeding “Energy Harvesting” based on piezoelectric sources, independent feeding: application to piezoelectric source and testing bench to self fed systems in roads applications that were previously done. This study is based on the search of feeding solutions Energy Harvesting focus on piezoelectric sources. The aim of this study is know the different piezoelectric materials possibilities that can offer to independent feeding when different circumstances and road surroundings are excited by vehicles in. To develop this study several signals of the testing bench have been used and also signals get from an installation constructed on a Campus road. As far as the study of the different piezoelectric materials used in this project is concerned we should know the electrical models features. In order to obtain these characteristics a program based on LabView was designed, this program can modify the signal so that it simulates the diverse circumstances to which they can be put under the different piezoelectric materials. In this study I have bearded in mind the safe distance between vehicles for different speeds and the possibility of being able to amplify the excitation that can receive the diverse materials. Using the program PSpice OrCAD® the different models with the objective are made to observe the behaviour of the materials under diverse circumstances. Also several different rectifying topologies have been used to be able to verify the maximum overvoltage accumulated. In addition I have assessed the maximum power that can give each material in each situation. Last but not least different practical proofs with the testing bench have been done to check the actual energy accumulation that can be obtained from the materials installed on it. Also the study of a practical application has been made that is able to feed small circuits or low consumption sensor.