905 resultados para endangered bird
Resumo:
The development and implementation of a population supplementation and restoration plan for any endangered species should involve an understanding of the species’ habitat requirements prior to the release of any captive bred individuals. The freshwater pearl mussel, Margaritifera margaritifera, has undergone dramatic declines over the last century and is now globally endangered. In Northern Ireland, the release of captive bred individuals is being used to support wild populations and repatriate the species in areas where it once existed. We employed a combination of maximum entropy modelling (MAXENT) and Generalized Linear Mixed Models (GLMM) to identify ecological parameters necessary to support wild populations using GIS-based landscape scale and ground-truthed habitat scale environmental parameters. The GIS-based landscape scale model suggested that mussel occurrence was associated with altitude and soil characteristics including the carbon, clay, sand, and silt content. Notably, mussels were associated with a relatively narrow band of variance indicating that M. margaritifera has a highly specific landscape niche. The ground-truthed habitat scale model suggested that mussel occurrence was associated with stable consolidated substrates, the extent of bankside trees, presence of indicative macrophyte species and fast flowing water. We propose a three phase conservation strategy for M. margaritifera identifying suitable areas within rivers that (i) have a high conservation value yet needing habitat restoration at a local level, (ii) sites for population supplementation of existing populations and (iii) sites for species reintroduction to rivers where the mussel historically occurred but is now locally extinct. A combined analytical approach including GIS-based landscape scale and ground-truthed habitat scale models provides a robust method by which suitable release sites can be identified for the population supplementation and restoration of an endangered species. Our results will be highly influential in the future management of M. margaritifera in Northern Ireland.
Resumo:
The cryptic, subterranean ways of golden moles (Chrysochloridae) hamper studies of their biology in the field. Ten species appear on the IUCN red list, but the dearth of information available for most inhibits effective conservation planning. New techniques are consequently required to further our understanding and facilitate informed conservation management decisions. We studied the endangered Juliana's golden mole Neamblysomus julianae and aimed to evaluate the feasibility of using implantable temperature sensing transmitters to remotely acquire physiological and behavioural data. We also aimed to assess potential body temperature (T-b) fluctuations in relation to ambient soil temperature (T-a) in order to assess the potential use of torpor. Hourly observations revealed that T-b was remarkably changeable, ranging from 27 to 33 degrees C. In several instances T-b declined during periods of low T-a. Such 'shallow torpor' may result in a daily energy saving of c. 20%. Behavioural thermoregulation was used during periods of high T-a by selecting cooler microclimates, while passive heating was used to raise T-b early morning when T-a was increasing. In contrast to anecdotal reports of nocturnal patterns of activity, our results suggest that activity is flexible, being primarily dependent on T-a. These results exemplify how behavioural patterns and microclimatic conditions can be examined in this and other subterranean mammal species, the results of which can be used in the urgently required conservation planning of endangered Chrysochlorid species.
Resumo:
Aim: Species loss has increased significantly over the last 1000 years and is ultimately attributed to the direct and indirect consequences of increased human population growth across the planet. A growing number of species are becoming endangered and require human intervention to prevent their local extirpation or complete extinction. Management strategies aimed at mitigating a species loss can benefit greatly from empirical approaches that indicate the rate of decline of a species providing objective information on the need for immediate conservation actions, e.g. captive breeding; however, this is rarely employed. The current study used a novel method to examine the distributional trends of a model endangered species, the freshwater pearl mussel, Margaritifera margaritifera (L.).
Location: United Kingdom and Republic of Ireland.
Methods: Using species presence data within 10-km grid squares since records began three-parameter logistic regression curves were fitted to extrapolate an estimated date of regional extinction.
Results: This study has shown that freshwater pearl mussel distribution has contracted since known historical records and outlier populations were lost first. Within the United Kingdom and Republic of Ireland, distribution loss has been greatest in Scotland, Northern Ireland, Wales and England, respectively, with the Republic of Ireland containing the highest relative proportion of M. margaritifera distribution, in 1998.
Main conclusions: This study provides empirical evidence that this species could become extinct throughout countries within the United Kingdom within 170 years under the current trends and emphasizes that regionally specific management strategies need to be implemented to prevent extirpation of this species.
Resumo:
Nowadays few people consider finding their way in unfamiliar areas a problem as a GPS (Global Positioning System) combined with some simple map software can easily tell you how to get from A to B. Although this opportunity has only become available during the last decade, recent experiments show that long-distance migrating animals had already solved this problem. Even after displacement over thousands of kilometres to previously unknown areas, experienced but not first time migrant birds quickly adjust their course toward their destination, proving the existence of an experience-based GPS in these birds. Determining latitude is a relatively simple task, even for humans, whereas longitude poses much larger problems. Birds and other animals however have found a way to achieve this, although we do not yet know how. Possible ways of determining longitude includes using celestial cues in combination with an internal clock, geomagnetic cues such as magnetic intensity or perhaps even olfactory cues. Presently, there is not enough evidence to rule out any of these, and years of studying birds in a laboratory setting have yielded partly contradictory results. We suggest that a concerted effort, where the study of animals in a natural setting goes hand-in-hand with lab-based study, may be necessary to fully understand the mechanism underlying the long-distance navigation system of birds. As such, researchers must remain receptive to alternative interpretations and bear in mind that animal navigation may not necessarily be similar to the human system, and that we know from many years of investigation of long-distance navigation in birds that at least some birds do have a GPS-but we are uncertain how it works.
Resumo:
1. Freshwater unionoids are one of the most threatened animal groups worldwide and the freshwater pearl mussel Margaritifera margaritifera is currently listed as critically endangered in Europe. The ‘EC Habitats & Species Directive’ requires that EU member states monitor the distribution and abundance of this species and report regularly on its conservation status.
2. The pearl mussel meta-population in Northern Ireland was surveyed to assess temporal population trends in Special Areas of Conservation (SACs) and mussel reproduction throughout its range.
3. Mussels occurred in six rivers and numbers within three SAC designated sites remained stable between 2004-07 and 2011. The discovery of >8,000 previously unknown individuals in the Owenreagh River contributed to an overall increase (+56.8%) in the total known population. All populations actively reproduced during 2010 with approximately half of all individuals gravid. Moreover, suitable salmonid hosts occurred at all sites with 10.7% of salmon and 22.8% of trout carrying encysted glochidia. Populations were composed entirely of aged individuals with little evidence of recent recruitment.
4. We infer that the break in the life cycle must occur during the juvenile stage when glochidia metamorphose and settle into the interstitial spaces within the substrate. Water quality parameters, most notably levels of suspended solids, exceeded the recommended maximum thresholds in all rivers.
5. We posit that the deposition of silt may be the main cause of juvenile mortality contributing to a lack of recruitment. Consequently, all populations were judged to be in ‘unfavourable’ conservation status. Catchment-level management plans are urgently needed to reduce siltation with the aim of improving recruitment. Our results have implications for the success of ex-situ conservation programmes; specifically, the size at which captive bred juveniles are released into the wild. Further research is required to assess the vulnerabilities of early life stages of M. margaritifera to siltation.
Resumo:
In 2006, India, Pakistan, and Nepal banned the manufacture of veterinary formulations of the nonsteroidal anti-inflammatory drug (NSAID) diclofenac. This action was taken to halt the unprecedented decline of three Gyps vulture species that were being poisoned by diclofenac residues commonly present in carcasses of domestic livestock upon which they scavenged. To assess the affect of this ban and evaluate residue prevelances of other NSAIDs, we present a method to detect diclofenac and eight more NSAIDs by liquid chromatography-mass spectrometry and apply this to 1488 liver samples from carcasses of livestock taken across seven Indian states. Diclofenac was present in 11.1% of samples taken between April and December 2006, and meloxicam (4%), ibuprofen (0.6%), and ketoprofen (0.5%) were also detected. Although meloxicam is safe for a range of avian scavengers, including Gypsvultures, data regarding the safety of other NSAIDs is currently limited. If wild Gyps on the Indian subcontinent are to survive, diclofenac bans must be completely effective, and NSAIDs that replace it within the veterinary drug market must be of low toxicity toward Gyps and other scavenging birds.
Resumo:
The extent to which climate change might diminish the efficacy of protected areas is one of the most pressing conservation questions. Many projections suggest that climate-driven species distribution shifts will leave protected areas impoverished and species inadequately protected while other evidence suggests that intact ecosystems within protected areas will be resilient to change. Here, we tackle this problem empirically. We show how recent changes in distribution of 139 Tanzanian savannah bird species are linked to climate change, protected area status and land degradation. We provide the first evidence of climate-driven range shifts for an African bird community. Our results suggest that the continued maintenance of existing protected areas is an appropriate conservation response to the challenge of climate and environmental change.
Resumo:
In eight European study sites (in Spain, Ireland, Netherlands, Germany, Poland, Estonia and Sweden), abundance of breeding farmland bird territories was obtained from 500 × 500 m survey plots (30 per area, N = 240) using the mapping method. Two analyses were performed: (I) a Canonical Correspondence Analysis of species abundance in relation to geographical location and variables measuring agricultural intensification at field and farm level to identify significant intensification variables and to estimate the fractions of total variance in bird abundance explained by geography and agricultural intensification; (II) several taxonomic and functional community indices were built and analysed using GLM in relation to the intensification variables found significant in the CCA. The geographical location of study sites alone explains nearly one fifth (19. 5%) of total variation in species abundance. The fraction of variance explained by agricultural intensification alone is much smaller (4. 3%), although significant. The intersection explains nearly two fifths (37. 8%) of variance in species abundance. Community indices are negatively affected by correlates of intensification like farm size and yield, whereas correlates of habitat availability and quality have positive effects on taxonomic and functional diversity of assemblages. Most of the purely geographical variation in farmland bird assemblage composition is associated to Mediterranean steppe species, reflecting the bio-geographical singularity of that assemblage and reinforcing the need to preserve this community. Taxonomic and functional diversity of farmland bird communities are negatively affected by agricultural intensification and positively affected by increasing farmland habitat availability and quality. © 2011 Springer Science+Business Media B.V.
Resumo:
Enhancing sampling and analyzing simulations are central issues in molecular simulation. Recently, we introduced PLUMED, an open-source plug-in that provides some of the most popular molecular dynamics (MD) codes with implementations of a variety of different enhanced sampling algorithms and collective variables (CVs). The rapid changes in this field, in particular new directions in enhanced sampling and dimensionality reduction together with new hardware, require a code that is more flexible and more efficient. We therefore present PLUMED 2 here a,complete rewrite of the code in an object-oriented programming language (C++). This new version introduces greater flexibility and greater modularity, which both extends its core capabilities and makes it far easier to add new methods and CVs. It also has a simpler interface with the MD engines and provides a single software library containing both tools and core facilities. Ultimately, the new code better serves the ever-growing community of users and contributors in coping with the new challenges arising in the field.
Program summary
Program title: PLUMED 2
Catalogue identifier: AEEE_v2_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEEE_v2_0.html
Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland
Licensing provisions: Yes
No. of lines in distributed program, including test data, etc.: 700646
No. of bytes in distributed program, including test data, etc.: 6618136
Distribution format: tar.gz
Programming language: ANSI-C++.
Computer: Any computer capable of running an executable produced by a C++ compiler.
Operating system: Linux operating system, Unix OSs.
Has the code been vectorized or parallelized?: Yes, parallelized using MPI.
RAM: Depends on the number of atoms, the method chosen and the collective variables used.
Classification: 3, 7.7, 23. Catalogue identifier of previous version: AEEE_v1_0.
Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 1961.
External routines: GNU libmatheval, Lapack, Bias, MPI. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
1. Using data on the spatial distribution of the British avifauna, we address three basic questions about the spatial structure of assemblages: (i) Is there a relationship between species richness (alpha diversity) and spatial turnover of species (beta diversity)? (ii) Do high richness locations have fewer species in common with neighbouring areas than low richness locations?, and (iii) Are any such relationships contingent on spatial scale (resolution or quadrat area), and do they reflect the operation of a particular kind of species-area relationship (SAR)?
2. For all measures of spatial turnover, we found a negative relationship with species richness. This held across all scales, with the exception of turnover measured as beta (sim).
3. Higher richness areas were found to have more species in common with neighbouring areas.
4. The logarithmic SAR fitted better than the power SAR overall, and fitted significantly better in areas with low richness and high turnover.
5. Spatial patterns of both turnover and richness vary with scale. The finest scale richness pattern (10 km) and the coarse scale richness pattern (90 km) are statistically unrelated. The same is true of the turnover patterns.
6. With coarsening scale, locations of the most species-rich quadrats move north. This observed sensitivity of richness 'hotspot' location to spatial scale has implications for conservation biology, e.g. the location of a reserve selected on the basis of maximum richness may change considerably with reserve size or scale of analysis.
7. Average turnover measured using indices declined with coarsening scale, but the average number of species gained or lost between neighbouring quadrats was essentially scale invariant at 10-13 species, despite mean richness rising from 80 to 146 species (across an 81-fold area increase). We show that this kind of scale invariance is consistent with the logarithmic SAR.
Resumo:
1. We tested the species diversity-energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2. We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 x 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3. We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4. Although the species-energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5. However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6. Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral.