949 resultados para elliptical core non-hexagonal symmetry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on an investigation into fuel design choices of a pressurized water reactor operating in a self-sustainable Th- 233U fuel cycle. In order to evaluate feasibility of this concept, two types of fuel assembly lattices were considered: square and hexagonal. The hexagonal lattice may offer some advantages over the square one. For example, the fertile blanket fuel can be packed more tightly reducing the blanket volume fraction in the core and potentially allowing to achieve higher core average power density. The calculations were carried out with Monte-Carlo based BGCore code system and the results were compared to those obtained with Serpent Monte-Carlo code and deterministic transport code BOXER. One of the major design challenges associated with the SB concept is high power peaking due to the high concentration of fissile material in the seed region. The second objective of this work is to estimate the maximum achievable core power density by evaluation of limiting thermal hydraulic parameters. The analysis showed that both fuel assembly designs have a potential of achieving net breeding. Although hexagonal lattice was found to be somewhat more favorable because it allows achieving higher power density, while having breeding performance comparable to the square lattice case. © Carl Hanser Verlag München.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 μm etc. After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non-return to zero (NRZ) data signals over a 30 m 7-cell HC-PBGF using the offset mode launching method. In another experiment, a short piece of 19-cell HC-PBGF was used to transmit two 20 Gbit/s NRZ channels using a spatial light modulator for precise mode excitation. Bit-error-ratio (BER) performances below the forward-error-correction (FEC) threshold limit (3.3×10-3) are confirmed for both data channels when they propagate simultaneously. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous manoeuvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of manoeuvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet. © 2013 EUCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fiber reinforced polymer (CFRP) composite sandwich panels with hybrid foam filled CFRP pyramidal lattice cores have been assembled from a carbon fiber braided net, 3D woven face sheets and various polymeric foams, and infused with an epoxy resin using a vacuum assisted resin transfer process. Sandwich panels with a fixed CFRP truss mass have been fabricated using a variety of closed cell polymer and syntactic foams, resulting in core densities ranging from 44-482kgm-3. The through thickness and in-plane shear modulus and strength of the cores increased with increasing foam density. The use of low compressive strength foams within the core was found to result in a significant reduction in the compressive strength contributed by the CFRP trusses. X-ray tomography led to the discovery that the trusses develop an elliptical cross-section shape during pressure assisted resin transfer. The ellipticity of the truss cross-sections increased, and the lattice contribution to the core strength decreased as the foam density was reduced. Micromechanical modeling was used to investigate the relationships between the mechanical properties and volume fractions of the core materials and truss topology of the hybrid core. The specific strength and moduli of the hybrid cores lay between those of the CFRP lattices and foams used to fabricate them. However, their volumetric and gravimetric energy absorptions significantly exceeded those of the materials from which they were fabricated. They compare favorably with other lightweight energy absorbing materials and structures. © 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use a computational homogenisation approach to derive a non linear constitutive model for lattice materials. A representative volume element (RVE) of the lattice is modelled by means of discrete structural elements, and macroscopic stress-strain relationships are numerically evaluated after applying appropriate periodic boundary conditions to the RVE. The influence of the choice of the RVE on the predictions of the model is discussed. The model has been used for the analysis of the hexagonal and the triangulated lattices subjected to large strains. The fidelity of the model has been demonstrated by analysing a plate with a central hole under prescribed in plane compressive and tensile loads, and then comparing the results from the discrete and the homogenised models. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. Summary A field programmable gate array (FPGA) based model predictive controller for two phases of spacecraft rendezvous is presented. Linear time-varying prediction models are used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longer range manoeuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at close range. The resulting constrained optimisation problems are solved using a primal-dual interior point algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft-core processor on the FPGA, on which the remainder of the system is implemented. Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online, in order to accommodate the varying problem sizes associated with the variable prediction horizon. The system is demonstrated in closed-loop by linking the FPGA with a simulation of the spacecraft dynamics running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation is substantially faster than pure embedded software-based interior point methods running on the same MicroBlaze and could be competitive with a pure custom hardware implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnMgO hexagonal-nanotowers/films grown on m-plane sapphire substrates were successfully synthesized using a vertical low-pressure metal organic chemical vapour deposition system. The structural and optical properties of the as-obtained products were characterized using various techniques. They were grown along the non-polar [1 0 (1) over bar 0] direction and possessed wurtzite structure. The ZnMgO hexagonal-nanotowers were about 200 nm in diameter at the bottom and 120 nm in length. Photoluminescence and Raman spectra show that the products have good crystal quality with few oxygen vacancies. With Mg incorporation, multiple-phonon scattering becomes weak and broad, and the intensities of all observed vibrational modes decrease. The ultraviolet near band edge emission shows a clear blueshift (as much as 100 meV) and broadening compared with that of pure ZnO products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coupling of surface plasmons to the photonic modes in hexagonal textured metallic microcavity was studied. The modified photonic modes enable efficient coupling with the luminescence source in the microcavity. Hexagonal photonic crystal lattice has higher folding symmetry providing more channels for surface plasmon coupling in different in-plane directions, i.e., more isotropic light extraction profile than one-or two-dimensional gratings. Results show that strong coupling between surface plasmon modes and the waveguide mode in the microcavity has led to angle-selective enhanced light extraction and it was as much as 12 times more light extracted compare to planar microcavity. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the chirality dependence of physical properties of nanotubes which are wrapped by the planar hexagonal lattice including graphite and boron nitride sheet, and reveal its symmetry origin. The observables under consideration are of scalar, vector, and tensor types. These exact chirality dependences obtained are useful to verify the experimental and numerical results and propose accurate empirical formulas. Some important features of physical quantities can also be extracted by considering the symmetry restrictions without complicated calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The laterally confining potential of quantum dots (QDs) fabricated in semiconductor heterostructures is approximated by an elliptical two-dimensional harmonic-oscillator well or a bowl-like circular well. The energy spectrum of two interacting electrons in these potentials is calculated in the effective-mass approximation as a function of dot size and characteristic frequency of the confining potential by the exact diagonalization method. Energy level crossover is displayed according to the ratio of the characteristic frequencies of the elliptical confinement potential along the y axis and that along the x axis. Investigating the rovibrational spectrum with pair-correlation function and conditional probability distribution, we could see the violation of circular symmetry. However, there are still some symmetries left in the elliptical QDs. When the QDs are confined by a "bowl-like" potential, the removal of the degeneracy in the energy levels of QDs is found. The distribution of energy levels is different for the different heights of the barriers. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The room temperature Raman spectra of the hexagonal GaN epilayer grown on [111]- oriented MgAl2O4 substrate were measured in various backscattering and right angle scattering geometries. All of the symmetry-allowed optical phonon modes were observed except the E-2 (low frequency) mode. The quasitransverse and quasilongitudinal modes were also observed in the x(zx)z and x(yy)z configurations, which are the mixed modes of pure transverse and longitudinal modes with A(1) and E-1 symmetry, respectively. (C) 1999 American Institute of Physics. [S0021-8979(99)01416-4].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By optimizing glass composition and using a multistage dehydration process, a ternary 80TeO(2)-10ZnO-10Na(2)O glass is obtained that shows excellent transparency in the wavelength range from 0.38 mu m up to 6.10 mu m. Based on this optimized composition, we report on the fabrication of a single-mode solid-core tellurite glass fiber with large mode area of 103 mu m(2) and low loss of 0.24 similar to 0.7 dB/m at 1550 nm. By using the continuous-wave self-phase modulation method, the non-resonant nonlinear refractive index n(2) and the effective nonlinear parameter gamma of this made tellurite glass fiber were estimated to be 3.8x10(-1)9 m(2)/W and 10.6 W-1.m(-1) at 1550 nm, respectively. (C) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

碲掺杂的高非线性石英光纤

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/- 2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 mu m, and the corresponding nonlinearity coefficient and birefringence are about 150 W-1 km(-1) and 2.5 x 10(-3) at 1.55 mu m, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing. (C) 2010 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The symmetries of a free incompressible fluid span the Galilei group, augmented with independent dilations of space and time. When the fluid is compressible, the symmetry is enlarged to the expanded Schrodinger group, which also involves, in addition, Schrodinger expansions. While incompressible fluid dynamics can be derived as an appropriate non-relativistic limit of a conformally invariant relativistic theory, the recently discussed conformal Galilei group, obtained by contraction from the relativistic conformal group, is not a symmetry. This is explained by the subtleties of the non-relativistic limit.