969 resultados para electromechanical coupling coefficient
Resumo:
A procedure for coupling mesoscale and CFD codes is presented, enabling the inclusion of realistic stratification flow regimes and boundary conditions in CFD simulations of relevance to site and resource assessment studies in complex terrain. Two distinct techniques are derived: (i) in the first one, boundary conditions are extracted from mesoscale results to produce time-varying CFD solutions; (ii) in the second case, a statistical treatment of mesoscale data leads to steady-state flow boundary conditions believed to be more representative than the idealised profiles which are current industry practice. Results are compared with measured data and traditional CFD approaches.
Resumo:
We look for minimal chiral sets of fermions beyond the standard model that are anomaly free and, simultaneously, vectorlike particles with respect to color SU(3) and electromagnetic U(1). We then study whether the addition of such particles to the standard model particle content allows for the unification of gauge couplings at a high energy scale, above 5.0 x 10(15) GeV so as to be safely consistent with proton decay bounds. The possibility to have unification at the string scale is also considered. Inspired in grand unified theories, we also search for minimal chiral fermion sets that belong to SU(5) multiplets, restricted to representations up to dimension 50. It is shown that, in various cases, it is possible to achieve gauge unification provided that some of the extra fermions decouple at relatively high intermediate scales.
Resumo:
It has been pointed out recently that current experiments still allow for a two Higgs doublet model where the hbb¯ coupling (kDmb/v) is negative; a sign opposite to that of the Standard Model. Due to the importance of delayed decoupling in the hH+H− coupling, h→γγ improved measurements will have a strong impact on this issue. For the same reason, measurements or even bounds on h→Zγ are potentially interesting. In this article, we revisit this problem, highlighting the crucial importance of h→VV, which can be understood with simple arguments. We show that the impacts on kD<0 models of both h→bb¯ and h→τ+τ− are very sensitive to input values for the gluon fusion production mechanism; in contrast, h→γγ and h→Zγ are not. We also inquire if the search for h→Zγ and its interplay with h→γγ will impact the sign of the hbb¯ coupling. Finally, we study these issues in the context of the flipped two Higgs doublet model.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Biotecnologia
Resumo:
The present work aims to achieve and further develop a hydrogeomechanical approach in Caldas da Cavaca hydromineral system rock mass (Aguiar da Beira, NW Portugal), and contribute to a better understanding of the hydrogeological conceptual site model. A collection of several data, namely geology, hydrogeology, rock and soil geotechnics, borehole hydraulics and hydrogeomechanics, was retrieved from three rock slopes (Lagoa, Amores and Cancela). To accomplish a comprehensive analysis and rock engineering conceptualisation of the site, a multi‐technical approach were used, such as, field and laboratory techniques, hydrogeotechnical mapping, hydrogeomechanical zoning and hydrogeomechanical scheme classifications and indexes. In addition, a hydrogeomechanical data analysis and assessment, such as Hydro‐Potential (HP)‐Value technique, JW Joint Water Reduction index, Hydraulic Classification (HC) System were applied on rock slopes. The hydrogeomechanical zone HGMZ 1 of Lagoa slope achieved higher hydraulic conductivities with poorer rock mass quality results, followed by the hydrogeomechanical zone HGMZ 2 of Lagoa slope, with poor to fair rock mass quality and lower hydraulic parameters. In addition, Amores slope had a fair to good rock mass quality and the lowest hydraulic conductivity. The hydrogeomechanical zone HGMZ 3 of Lagoa slope, and the hydrogeomechanical zones HGMZ 1 and HGMZ 2 of Cancela slope had a fair to poor rock mass quality but were completely dry. Geographical Information Systems (GIS) mapping technologies was used in overall hydrogeological and hydrogeomechanical data integration in order to improve the hydrogeological conceptual site model.
Resumo:
Fundação para a Ciência e a Tecnologia - PTDC/AGR-AAM/101643/2008 NanoDC ; SFRH/BD/76070/2011 ; FP7-PEOPLE-IRSES-2010-269289- ELECTROACROSS
Resumo:
Introduction The association between leprosy and pregnancy is currently poorly understood and has been linked to serious clinical consequences. Methods A retrospective study between 2007 and 2009 was performed in the integration region of Carajás, Brazil on a population of pregnant lepers, with non-lepers of ages 12-49 years serving as the reference population. Results Twenty-nine pregnant lepers were studied during the study period. The detection rates (DRs) for the studied association were 4.7 in 2007, 9.4 in 2008, and 4.3 in 2009. Conclusions The Carajás region presented a medium pattern of endemicity during most of the study period, with a high DR found in 2008.
Resumo:
Introduction Our study presents a method to generate a novel detection coefficient for the association between leprosy and pregnancy (DCLP). Methods The DCLP was calculated for women from the State of Pará (2007-2009), Brazil. Data were ordered, divided into five equal parts (corresponding to the P20, P40, P60, and P80 percentiles), and classified as low, medium, high, very high, or hyperendemic. Results Using the new index, we established the DCLP parameters for low (<0.36), medium (0.36-0.69), high (0.70-1.09), very high (1.10-1.50), and hyperendemic (>1.50). Conclusions The new DCLP is more appropriate than the overall detection coefficient (DC), which does not take into account the particularities of the interaction between a disease and a specific physiological state.
Resumo:
Microbial electrolysis cells (MECs) are an innovative and emerging technique based on the use of solid-state electrodes to stimulate microbial metabolism for wastewater treatment and simultaneous production of value-added compounds (such as methane). This research studied the performance of a two-chamber MEC in terms of organic matter oxidation (at the anode) and methane production (at the cathode). MEC‟s anode had been previously inoculated with an activated sludge, whereas the cathode chamber inoculum was an anaerobic sludge (containing methanogenic microorganisms). During the experimentation, the bioanode was continuously fed with synthetic solutions in anaerobic basal medium, at an organic load rate (OLR) of around 1 g L-1 d-1, referred to the chemical oxygen demand (COD). At the beginning (Run I), the feeding solution contained acetate and subsequently (Run II) it was replaced with a more complex solution containing soluble organic compounds other than acetate. For both conditions, the anode potential was controlled at -0.1 V vs. standard hydrogen electrode, by means of a potentiostat. During Run I, over 80% of the influent acetate was anaerobically oxidized at the anode, and the resulting electric current was recovered as methane at the cathode (with a cathode capture efficiency, CCE, accounting around 115 %). The average energy efficiency of the system (i.e., the energy captured into methane relative to the electrical energy input) under these conditions was over 170%. However, reactor‟s performance decreased over time during this run. Throughout Run II, a substrate oxidation over 60% (on COD basis) was observed. The electric current produced (57% of coulombic efficiency) was also recovered as methane, with a CCE of 90%. For this run the MEC‟s average energy efficiency accounted for almost 170 %. During all the experimentation, a very low biomass growth was observed at the anode whereas ammonium was transferred through the cationic membrane and concentrated at the cathode. Tracer experiments and scanning electron microscopy analyses were also carried out to gain a deeper insight into the reactor performance and also to investigate the possible reasons for partial loss of performance. In conclusion, this research suggests the great potential of MEC to successfully treat low-strength wastewaters, with high energy efficiency and very low sludge production.
Resumo:
In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations
Resumo:
A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−1 of proton--proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model.
Resumo:
Due to the increasing need of low voltage actuators, independent from electrochemical processes, electroactive actuators based on poly(vinylidene fluoride) composites with 10, 25 and 40 % of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim] [NTf2], ionic liquid are prepared by solvent casting and melting. We show that the charge structure of [C2mim] [NTf2] induces the complete piezoelectric -phase crystallization of the PVDF within the composite and decreases its crystallinity fraction significantly. [C2mim] [NTf2] also works as a plasticizer of PVDF, reducing the elastic modulus down to 12 % of the initial value. Moreover, the composites show significant displacement and bending under applied voltages of 2, 5 and 10 Vpp. The displacement and bending of the composite membranes are also evaluated as a function of [C2mim] [NTf2] content and sample thickness. Increasing amounts of ionic liquid result in larger deformations independently of the applied voltage.
Resumo:
The interesting properties of thermoplastics elastomers can be combined with carbon nanotubes (CNT) for the development of large strain piezoresistive composites for sensor applications. Piezoresistive properties of the composites depend on CNT content, with the gauge factor increasing for concentrations around the percolation threshold, mechanical and electrical hysteresis. The SBS copolymer composition (butadiene/styrene ratio) influences the mechanical and electrical hysteresis of composites and, therefore, the piezoresistive response. This work reports on the electrical and mechanical response of CNT/SBS composites with 4%wt nanofiller content, due to the larger electromechanical response. C401 and C540 SBS copolymers with 80% and 60% butadiene content, respectively have been selected. The copolymer with larger amount of soft phase (C401) shows a rubber-like mechanical behavior, with mechanical hysteresis increasing linearly with strain until 100% strain. The copolymer with the larger amount of hard phase (C540) just shows rubber-like behavior for low strains. The piezoresistive sensibility is similar for both composites for low strains, with a GF≈ 5 for 5% strain. The electrical hysteresis shows opposite behavior than the mechanical hysteresis, increasing with strain for both composites, but with higher increase for softer copolymer, C401. The GF increases with increasing strain, but this increase is larger for composites with lower amounts of soft phase due to the distinct initial modulus and deformation of the soft and hard phases of the copolymer. The soft phase shows larger strain under a given stress than the harder phase and the conductive pathway rearrangements in the composites are different for both phases, the harder copolymer (C540) showing higher piezoresistive sensibility, GF≈ 18, for 20% strain.
Resumo:
Results of a search for H→ττ decays are presented, based on the full set of proton--proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of s√ = 7 TeV and s√ = 8 TeV respectively. All combinations of leptonic (τ→ℓνν¯ with ℓ=e,μ) and hadronic (τ→hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of μ=1.43+0.43−0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model.